
Page 1 of 12

Practical Project: Hydrological modelling with real rainfall and flow data

INTRODUCTION

Due to the complexities of the different processes involved and widely varying landscape conditions,

representative hydrological modelling can often be difficult to achieve. Consequently, where real

data is available, this can be invaluable in selecting, calibrating and validating suitable models for a

given situation. Geographical Information Systems (GIS) are ideally suited for spatial analysis aspects

of hydrology such as identifying river basin catchment boundaries from Digital Elevation Models

(DEM). However, they are typically quite poor at directly generating, analysing or presenting

temporal data and are thus often loosely coupled with other software. This project will develop

Python scripts for ArcGIS to automate extraction of recorded time-series rainfall data that specifically

relates to geographic locations selected (typically catchment areas). This will be demonstrated

through a simple hydrological model in order to compare against actual measured stream flow data.

DATA SOURCES

Although there are many sources of mean or peak rainfall measurements available, these are

typically specified over a long time period and/or a vague geographical location. In order to model

dynamic response of a river system (particularly for flood estimation), more finely-grained

time/location data is required – which was made available under special licence by The Met Office.

Table 1: Data sources and sets used

Source Data Set Description

Meteorological
Office (UKMO)

(BADC, 2014)

Rain Radar data
from the NIMROD

System

1km gridded composite C-Band radar images of
precipitation that have been calibrated with rain
gauges. Data is spaced at 5 minute intervals and

available from 2004 to the present day.

Centre for
Ecology &
Hydrology
(CEH)

Plynlimon spatial
datasets

Flow rate data and further descriptive data from these
experimental/research catchments in Wales.

Ordnance
Survey (via
Digimap)

1:50k and 1:250k
raster maps

For context within GIS map output

Data.gov.uk Pontbren automatic
weather station
(AWS) dataset

Historic temperature readings. Used to put historic
river discharge rates into context of likelihood of snow

or ice.

METHODOLOGY

Unfortunately the Met Office rainfall data is stored in a proprietary (“NIMROD”) binary format for

which there are no officially supported conversion programs available. The community-supplied

programmes and methodologies for converting data (BADC, 2014) have either limited functionality

or are awkward to integrate with ArcGIS (Armstrong, 2013). There are generally two requirements

for such data:

Page 2 of 12

 Spatial raster data is required (typically for a distributed model), preferably for a smaller area

than the default whole of the UK. The python “nimrod.py” module has been developed for

this.

 Time series of single values of mean rainfall for specifically defined areas (typically river basin

catchment or sub-catchment areas). The “gen_rainfall_time_series.py” ArcGIS python script

has been developed for this.

Python ArcGIS Script: gen_rainfall_time_series.py

This script (listed in Appendix 1) calculates the mean rainfall rates across an arbitrarily shaped area

for a specified time series. An input raster dataset is used to define the precise area perimeter, with

the time series defined by a list of dates, a start time, a fixed time-step between images and a total

image count. The script will automatically locate the correct data files (and will check all required

dataset files are accessible before processing commences as this can be a slow process).

It is easiest to describe the script operations by illustrating the equivalent steps that would be

performed if done interactively within ArcMap:

1. Get required raster overlay (of river basin catchment) of interest and extract the horizontal and

vertical limits of the area extent of this overlay.

Note that such an estimate for catchment watersheds can be directly generated within ArcGIS from a

Digital Elevation Model (DEM), using the standard hydrology tools sequence: Flow_Dir (to calculate

the probable water flow directions), Fill (to make the DEM depressionless), Flow_Acc (accumulating

flow direction vectors to give an indication of catchment areas, Watershed (after defining the pour

point outlet(s) of catchment area(s)).

Figure 1: Raster overlay defined for (catchment) area of interest

Page 3 of 12

2. (For each time-step) get required rainfall raster image for the whole of the UK:

Figure 2: Full UK Rainfall raster image

3. Clip image to a rectangle a little larger (to avoid filtering artefacts at the resampling stage) than

the area of interest. The newly defined python function nimrod2asc (in nimrod.py) is used for this.

Figure 3: Rainfall raster image clipped to rectangle of interest

4. Resample the rainfall image to give it the same resolution as the (catchment) area raster to

maximize precision of area included. Cubic interpolation filtering is used to make best use of adjacent

(not included) pixels to smooth the rainfall image.

Figure 4: Rainfall image resampled to cell size of (catchment) area raster

Page 4 of 12

5. Clip the resampled rainfall image to the shape required.

Figure 5: Resampled rainfall image clipped to (catchment) area

From here the “Raster Properties” function can be used to extract the mean rainfall within the

clipped region, which is written out to a comma-separated variable (CSV) text file together with a

timestamp before the whole sequence is repeated for the next time-step. The CSV file can later be

read into a spreadsheet or other software to process the time-series results.

Python Module nimrod.py (function nimrod2asc)

This is listed in Appendix 2. The core of it is based on a community-supplied script “read_nimrod.py”

(BADC, 2014) and the NIMROD format specification (Stone et al, 2008), but it has been rewritten and

extended to perform the following tasks:

 Read key data from header: size of image, raster cell size, British National Grid location.

 Extract a rectangular subset of the image around specified bounds and recalculate BNG

location.

 Generate an ArcGIS ASCII GRID (*.asc) format raster file, taking care to use "xllcenter"

rather than the standard "xllcorner" header as this would introduce a 500m position error.

Figure 3 (earlier) illustrates how the ArcGIS script would use function nimrod2asc to extract just the

rectangular section of the rainfall image required.

Test Methodology: comparison with flow data

A catchment area was selected for which detailed flow data (discharge Q) could be obtained – in this

case the upper reaches of the River Wye above the gauging station at Cefyn Brwyn in Wales. This is a

relatively small catchment (10.6 km2) of unforested moorland which has high rainfall and steep

gradients. As such, runoff into the extensive stream network (figure 6) and thus out of the catchment

should be fairly fast, with relatively limited groundwater flow or individual storm events. The slightly

smaller (8.7 km2) adjacent upper Severn catchment was also considered, although this is largely

forested.

Page 5 of 12

Figure 6: Catchments limits of the upper Wye and Severn rivers in Wales

 Using the gen_rainfall_time_series.py script, time-series rainfall was extracted for this watershed at

30 minute intervals over a period of 10 days from 25 February 2008. By multiplying the mean

catchment rainfall values by the catchment area, values of rainfall water volume per second could be

derived and compared with the catchment river discharge rate Q. Clearly rainfall doesn’t

immediately appear at the output of the catchment, but by continuously summing both rainfall and

discharge over the 10 days comparisons could be made of total volumes of water entering (via

rainfall) and leaving (by river flow) the catchment.

Page 6 of 12

RESULTS AND ANALYSIS

Each of the 2 catchment rainfall extractions parsed 488 UK rainfall maps (3.5GB) to generate 30

minute time steps over a 10 day period. This took approximately 45 minutes on a (2007-vintage) Dell

D630 Laptop. Figure 7 illustrates that although the catchment areas are small and immediately

adjacent, there are at times significant differences in mean rainfall across each catchment.

Figure 7: Comparison of mean rainfall in adjacent catchment areas

In figure 8, the direct causal effect of peaks in rainfall (Rf) monitored by weather radar leading to

(more spread out) peaks in river discharge (Q) measured at the gauging station clearly confirms that

the 2 independent data sets are aligned. The cumulative sums of rainfall (Accum Rf) and discharge

(Accum Q) give a less promising result. It would be expected that the sum of rainfall would always be

higher than discharge due to water returned to the atmosphere through evapotranspiration – but we

are seeing the opposite. The discharge Q can be separated into 2 components: storm flow (in

relatively quick response to rainstorm events) and groundflow (relatively slow and slowly changing

flows of water that have infiltrated the soil and descended to the saturated region, i.e. below the

water table). The groundflow is usually indicated by the asymptotes that Q settles to – it can be seen

that in the last few days of the chart that Accum Q diverges from Accum Rf entirely due to this

groundwater flow. It is plausible that there might be a significant amount of snow or ice in the

system (from before the start of the trace) that is melting. Snowfall or ice formation is probably the

reason why the heavy precipitation from the 168 hour mark does not translate to river discharge as

temperatures can be seen to be dropping sharply after that point (figure 9). The dashed traces show

that a simple exponential delay model derived purely from Rainfall Rf can give reasonable storm flow

predictions (particularly for well-separated storm events). This equation is of the form:

Exp Model Q -> (Exp Model Q) + Rf *(Input Gain) – ((Exp Model Q) – (Throughflow))*(Decay rate)

0

2

4

6

8

10

12

14

100 110 120 130 140 150 160 170 180 190 200

M
e

an
 R

ai
n

fa
ll

(m
m

/h
r)

Time (hours) [Time 0 = 25/02/2008 00:00]

Severn Rainfall

Wye Rainfall

Page 7 of 12

Figure 8: River Wye precipitation vs. river discharge Q

Figure 9: Pontbren (close to Plynlimon) historic temperature measurements

-400000

-200000

0

200000

400000

600000

800000

1000000

1200000

0

5

10

15

20

25

30

35

40

0 24 48 72 96 120 144 168 192 216 240 264

A
cc

u
m

u
la

te
d

 v
o

lu
m

e
 o

f
w

at
e

r
(m

^3
)

Fl
o

w
 (

cu
m

e
cs

)

Time (hours) [Time 0 = 25/02/2008 00:00]

Rainfall Rf

Discharge Q

Exp Model Q

Accum Rf

Accum Q

Accum Exp Q

-2
0
2
4
6
8

10

Te
m

p
e

ra
tu

re
 (

C
)

Date and Time

Page 8 of 12

CONCLUSIONS

The rainfall/discharge comparisons in this report demonstrate that the weather radar maps can be

used as a plausible source for time-series hydrology modelling. The time taken to extract data for

each area does limit the method to lumped parameter models rather than distributed ones.

However, it is believed that ArcGIS fetching/storage of raster data consumes most of the time and

the script would be significantly faster if functions were implemented directly (without ArcGIS). The

ArcGIS environment theoretically makes it easy to automate processes by using the “Copy python

snippet” menu options on the results window of previous (interactive) operations. However, the

inefficiency (and often unreliability) of the results does question this approach. For the scripts that

have been developed, a useful next stage would be to automatically retrieve the required NIMROD

data files via FTP rather than having them reside on the local machine.

ACKNOWLEDGEMENTS

This work used public sector information licensed under the Open Government Licence v2.0 obtained

via the data.gov.uk website. Digital boundary and raster map data was supplied by Ordnance Survey

via the Digimap (digimap.edina.ac.uk) website. These data are Crown copyright and are reproduced

with permission of the Office of Public Sector Information (OPSI). Meteorological Office (UKMO) data

was supplied under licence through the NERC BADC Data Centre. This report also contains data

supplied by Natural Environment Research Council (Plynlimon datasets) which are ©NERC (Centre for

Ecology & Hydrology).

REFERENCES

Armstrong, A. 2013. Rainfall Radar. [Online]. [Accessed 14 May 2014]. Available from:

http://alonaarmstrong.wordpress.com/radar/

British Atmospheric Data Centre (BADC). 2014. BADC Met Office Rain Radar Data from the NIMROD

System. [Online]. [Accessed 14 May 2014]. Available from:

http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_nimrod

Met Office. 2014. Monthly rainfall measurements. [Online]. [Accessed 31 April 2014]. Available from:

http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/yeoviltondata.txt

Stone, D, Harrison, D, Standing, R. 2008. Nimrod System Documentation Paper No.2: Nimrod format

for image and model field files. [Online]. [Accessed 14 May 2014]. Available from:

http://badc.nerc.ac.uk/cgi-bin/data_browser/data_browser/badc/ukmo-nimrod/doc/

http://alonaarmstrong.wordpress.com/radar/
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_nimrod
http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/yeoviltondata.txt
http://badc.nerc.ac.uk/cgi-bin/data_browser/data_browser/badc/ukmo-nimrod/doc/

Page 9 of 12

APPENDIX 1: ArcGIS Python Script for Extracting Catchment-Specific Rainfall

(gen_rainfall_time_series.py)

#!/usr/bin/python
#---
Generate Catchment-specific Rainfall Time Series Data
Inputs:
MetOffice NIMROD UK rainfall data (1km grid)
Catchment Areas (in ArcGIS Raster format)

Richard Thomas May 2014
#---

import os # Standard package for operating system dependent functionality
import arcpy # ArcGIS's Python site package
import nimrod # Convert NIMROD format rainfall files to .asc files

---- Define operating parameters ----

Name and location of catchment raster (must be in a personal geodatabase)
#catchmentRaster = "Wye_Catchment_Raster"
catchmentRaster = "Severn_Catchment_Raster"
sourceMdbPath = "work.mdb"

Dates in order, plus hour/minute to start on first date
dateList = ["20080225", "20080226", "20080227", "20080228", "20080229",
 "20080301", "20080302", "20080303", "20080304", "20080305",
 "20080306"]
hour = 20
minute = 0

Step between each reading (in minutes)
minStep = 30

Total number of steps
totalCount = 488

Location / file naming of NIMROD rainfall binary files
nimrodPath = "NIMROD_data/"
nimrodSuffix = "_nimrod_ng_radar_rainrate_composite_1km_merged_UK_zip"

---- Perform initial calculations & checks ----

Initialise variables
dateIx = 0
errors = 0
timeList = []

print "Creating and checking list of NIMROD files.."
while totalCount > 0:
 date = dateList[dateIx]
 timeList.append("%s%02d%02d" % (date, hour, minute))
 totalCount -= 1
 minute += minStep
 while minute >= 60:
 minute -= 60
 hour += 1
 while hour >= 24:
 hour -= 24
 dateIx += 1
 if dateIx > len(dateList):
 raise "Error: ran off end of date list"

Run through quickly to check files all exist and are readable
for snapshot in timeList:
 nimrodFile = nimrodPath + snapshot + nimrodSuffix
 try:
 nimrodFileId = open(nimrodFile, "rb")
 nimrodFileId.close()
 except:
 print "File not found: " + nimrodFile
 errors += 1

if errors > 0:
 raise "Bailing out due to errors"

---- Start ArcMap interaction ----

class LicenseError(Exception):
 pass

Check out Spatial Analyst Licence (if available)
print "Checking out Spatial Analyst licence.."

Page 10 of 12

try:
 if arcpy.CheckExtension("Spatial") == "Available":
 arcpy.CheckOutExtension("Spatial")
 else:
 raise LicenseError

 # Throw an exception if an ArcGIS tool produces a warning
 arcpy.SetSeverityLevel(1)

 # Sets current folder as workspace
 arcpy.env.workspace = os.getcwd()

 # Allow over-writing of files
 arcpy.env.overwriteOutput = True

 # Get catchment raster from file
 catchRas = arcpy.sa.Raster(sourceMdbPath + "/" + catchmentRaster)

 # Get bounds of catchment
 extent = catchRas.extent

 # Sets cell size of output raster layers to be the same as catchment
 cellSize = catchRas.meanCellWidth

Catch licence being unavailable
except LicenseError:
 print "Spatial Analyst license is unavailable"

Define column headings in output CSV file
csvOutText = "Year, Month, Date, Hour, Minute, Rainfall (mm/hr)\n"

---- Loop through NIMROD files to extract local rainfall data ----

for snapshot in timeList:
 nimrodFile = nimrodPath + snapshot + nimrodSuffix
 rainRasFile = catchmentRaster + "_" + snapshot + ".asc"

 try:
 # Generate .asc raster file from NIMROD data, but only make it a
 # little bit bigger than catchment as we are about to upsample it
 nimrod.nimrod2asc(nimrodFile, rainRasFile, extent.XMin, extent.XMax,
 extent.YMin, extent.YMax)

 # Get catchment-specific rainfall raster from ASC file
 rainRas = arcpy.sa.Raster(rainRasFile)

 # perform (Cubic/Nearest) interpolation of 1km grid to 15m grid
 resampRainPath = sourceMdbPath + "/rainResampled"
 arcpy.Resample_management(rainRas, resampRainPath, cellSize, "CUBIC")
 #arcpy.Resample_management(rainRas, resampRainPath, cellSize, "NEAREST")
 resampRainRas = arcpy.sa.Raster(resampRainPath)

 # Select only rain that falls within catchment
 catchResampRainPath = sourceMdbPath + "/catchRainResampled"
 arcpy.gp.Con_sa(catchRas, resampRainRas, catchResampRainPath, "#", "#")
 catchResampRainRas = arcpy.sa.Raster(catchResampRainPath)

 # Get mean rainfall that falls within catchment for this timeslot
 # Also correct for fact that NIMROD data is mm/hr * 32
 rpResult = arcpy.GetRasterProperties_management(catchResampRainRas,
 "MEAN","#")
 meanRainfallRate = float(rpResult.getOutput(0)) / 32.0

 # Our job for this raster is done: write mean rainfall to CSV file
 csvOutText += snapshot[0:4] + ", " + snapshot[4:6] + ", " \
 + snapshot[6:8] + ", " + snapshot[8:10] + ", " \
 + snapshot[10:12] + ", %f\n" % meanRainfallRate

 # Remove ASC file
 del rainRas
 os.remove(rainRasFile)

 # Catch warnings from geoprocessing tools (if severity level = 1)
 except arcpy.ExecuteWarning:
 print arcpy.GetMessages()

 # Catch errors from geoprocessing tools
 except arcpy.ExecuteError:
 print arcpy.GetMessages()

Return Spatial Analyst Licence (this would happen anyway when python quits)
arcpy.CheckInExtension("Spatial")

Write results to CSV file
outf = open(catchmentRaster + ".csv", 'w')
outf.write(csvOutText)
outf.close()

Page 11 of 12

Delete intermediate calculation rasters
(Note: temporary raster files would be deleted when Python window or
ArcGIS quits anyway)
arcpy.Delete_management(resampRainRas)
arcpy.Delete_management(catchResampRainRas)

print "Done."

APPENDIX 2: Python Module for converting NIMROD binary files to “.asc” files

#!/usr/bin/python
#---
Module: nimrod

Convert NIMROD format rainfall files to .asc files,
extracting only rainfall data subset required (1km buffer round catchment).

Richard Thomas May 2014
(based on read_nimrod.py by Charles Kilburn Aug 2008)
#---

import os, stat, re, sys, time, glob
import struct, array

def nimrod2asc (nimrodFilename, ascFilename, xmin, xmax, ymin, ymax):

 print "> " + nimrodFilename

 file_id = open(nimrodFilename,"rb")
 record_length, = struct.unpack(">l", file_id.read(4))
 if record_length != 512:
 raise "Unexpected record length", record_length

 # Read first 31 2-byte integers (header fields 1-31)
 gen_ints = array.array("h")
 gen_ints.read(file_id, 31)
 gen_ints.byteswap()

 date_time_str = "%4.4d%2.2d%2.2d_%2.2d%2.2d" %(
 gen_ints[0], gen_ints[1], gen_ints[2], gen_ints[3], gen_ints[4])
 ncols = gen_ints[16]
 nrows = gen_ints[15]

 # Read next 28 4-byte floats (header fields 32-59)
 gen_reals = array.array("f")
 gen_reals.read(file_id, 28)
 gen_reals.byteswap()

 cellsize = gen_reals[3]
 xllcenter = gen_reals[4]
 y_top_center = gen_reals[2]
 yllcenter = (y_top_center - gen_reals[5] * gen_ints[15])
 nodata_value = gen_reals[6]

 # Read next 45 4-byte floats (header fields 60-104)
 spec_reals = array.array("f")
 spec_reals.read(file_id, 45)
 spec_reals.byteswap()

 # Read next 56 characters (header fields 105-107)
 characters = array.array("c")
 characters.read(file_id, 56)

 # Read next 51 2-byte integers (header fields 108-)
 spec_ints = array.array("h")
 spec_ints.read(file_id, 51)
 spec_ints.byteswap()

 record_length, = struct.unpack(">l", file_id.read(4))
 if record_length != 512:
 raise "Unexpected record length", record_length

 # Calculate min and max pixel number in each row to use
 # (Add an extra pixel each side to help smoothing)
 xMinPixelId = int((xmin - xllcenter) / cellsize) - 1
 xMaxPixelId = int((xmax - xllcenter) / cellsize) + 3
 xllcenter += xMinPixelId * cellsize
 ncols_out = xMaxPixelId - xMinPixelId

 # Calculate min and max rows of pixels to use
 # (Add an extra pixel each side to help smoothing)
 yMinPixelId = int((y_top_center - ymax) / cellsize) - 2
 yMaxPixelId = int((y_top_center - ymin) / cellsize) + 2
 yllcenter += (nrows - yMaxPixelId) * cellsize
 nrows_out = yMaxPixelId - yMinPixelId

Page 12 of 12

 # Read the Data
 array_size = ncols * nrows

 record_length, = struct.unpack(">l", file_id.read(4))
 assert record_length == array_size * 2, "Unexpected data record length (1)"

 data = array.array("h")
 try:
 data.read(file_id, array_size)
 record_length, = struct.unpack(">l", file_id.read(4))
 assert record_length == array_size * 2, "Unexpected data record length (2)"
 data.byteswap()
 except:
 print "Data Read failed"

 file_id.close()

 # Write to output file
 print "Writing data array (%d x %d) to file: %s\n" % (nrows_out, ncols_out,
 ascFilename)
 outf = open(ascFilename, 'w')

 outf.write("ncols %d\n" % ncols_out)
 outf.write("nrows %d\n" % nrows_out)
 outf.write("xllcenter %d\n" % xllcenter)
 outf.write("yllcenter %d\n" % yllcenter)
 outf.write("cellsize %.1f\n" % cellsize)
 outf.write("nodata_value %.1f\n" % nodata_value)

 for i in range(yMinPixelId, yMaxPixelId):
 for j in range(xMinPixelId, xMaxPixelId - 1):
 outf.write("%d, " % data[i*ncols + j])
 outf.write("%d\n" % data[i*ncols + xMaxPixelId - 1])
 outf.close()
 return

