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Abstract 

Previous research has shown that the likelihood of choosing to commute by bicycle can be very dependent 

on the availability of acceptable cycle routes of reasonable distance, avoiding hills and with a minimum of 

cycling in motorized traffic. Several papers have also highlighted this is an aspect that has been difficult to 

measure effectively and thus is often done using indirect methods such as summing quantity of cycle 

infrastructure within an area. Transport simulation models have historically focused on motorized traffic 

and thus often do not have enough detail at a small street level to be representative for modeling non-

motorized traffic. Taking the UK city of Bristol as a basis for analysis, this study looks at a method of 

combining route cost functions (derived from third party cycle-specific routing software) for a large number 

of realistic commuting journeys. To overcome availability limitations on small area census commuting data, 

an additional method is developed to generate representative synthetic commuting origin-destination flow 

data at a fine spatial granularity using the census data that is available as constraints. 
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1 Introduction 

Cycling to work in England and Wales is very much a minority pursuit - only 2.8% of the working population 

recorded cycling as their main commute mode in the 2011 census (ONS, 2014b, p1). So why should we 

analyse cycle commuting? 

“As commuting is non-discretionary and fixed in time and place for most people, it contributes 

disproportionately to traffic congestion and environmental pollution. Commuting by bicycle can 

therefore make a greater contribution to reducing congestion than cycling for other purposes.” 

(Heinen et al, 2010, p60) 

Cycling data in many surveys is often limited to commuting, though this is a good proxy for utility cycling 

(Parkin, 2004); the UK National Travel Survey (NTS) shows a significant correlation, with the ratio of 

commuting to general utility cycling being 1:0.77 averaged over 2002-2010 (Goodman, 2013, p8). Census 

figures also generally under-represent cycle commuting as many people cycle (often weather-dependently) 

only on certain days or times of the year (Schoner and Levinson, 2013, p8), or in conjunction with a train 

journey as their main mode. 

Considering cycle routing specifically is important: the location of cycling infrastructure can be key to 

whether it is effective in encouraging cycle commuting. Although various analyses take into account 

general measures of infrastructure provision (for example Parkin et al, 2008; Schoner and Levinson, 2013), 

it has been recommended that specific commuting routes should be analysed as characteristics of routes 

have a strong influence on cycle commuting uptake (Schoner, 2013, p48). Knowledge of existing routes can 

inform policy on locating new cycle infrastructure, but it could also highlight areas where infrastructure is 

adequate but cycle uptake is poor - indicating a policy need to address other determinants. 

Doing such an analysis now is timely: much 2011 census data relating to Workplace Zone (WZ) geographies 

and origin-destination data has just become available in recent months. Because the census was only taken 

a few years ago, cycle-routing based on today’s infrastructure will also still be largely representative of 

routes at census time. 

The city of Bristol in the southwest of England was chosen for this analysis. This was partly because of the 

author’s first-hand knowledge of the city, but also because the recent release of the first draft of a new 

Bristol Cycling Strategy (Bristol City Council, 2014a) proposed a change in cycle policy to focus on 

effectiveness of the network for utility cycling (as well as leisure provision). 

The scope of this paper is to examine two new methods which in combination allow fine-grained cycle-

commuting route analysis to be done between Population Weighted Centroids (PWCs) of the lowest census 

levels of geography: between Output Areas (OA) origins and Workplace Zone (WZ) destinations. The first 

method is to use a (third party) cycle-routing engine to generate plausible commuting routes and ‘cost 
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functions’ that characterise those routes. These route results will be aggregated based on known 

commuting origins to give area-based measures which can then be used in more traditional area-based 

aggregate regression analyses of determinants of cycle mode choice. Unfortunately, even when OA-level 

commuting origin-destination census flow data does become available at the end of 2014, it will only be 

accessible within a ‘secure’ environment, thus restricting its use. The second new method is to synthesize 

OA-level commuting flows (based on other available census data) which should be representative enough 

for the intended routing regressions analyses. 

In summary, the regression model being built will address the likelihood of whether for each area, the local 

workers are likely to commute by bicycle, given typical locations commuted to from that area. However, 

the key aim of this study is not to produce a definitive model, but to determine if these new methods can 

improve on routing-related aspects of cycle mode commuting analysis and to explore where routing 

aspects fit into the very broad and complicated picture of what determines whether people choose to 

commute by bicycle. 

 

1.1 Aims and Objectives 

This study has several specific objectives which can be summarised by outlining how the key method steps 

relate to them: 

1. Route analysis of MSOA (Middle layer Super Output Area) level commuting flows: Test correlations 

between routing cost functions and cycle mode choice 

At the 2011 census MSOA-level of aggregation (2000-6000 households), a complete list of all origin-

destination commuting flows (by any method) within an area surrounding Bristol will be extracted from 

census data. For each of these flows, a third party cycle routing engine will generate representative cycle 

paths and associated cost functions relating to route directness, time, effort and separation from traffic. 

Correlation and linear regression will highlight how these cost functions relate to actual cycling proportions 

taken from the census. 

2. Residential area analysis at MSOA level: Combine route information with aggregate census data to test 

effectiveness of cost functions within an area-based regression 

For each residential MSOA and each routing cost type, costs from all flows originating from this area will be 

combined to produce area cost functions. In combination with some additional census variables these will 

be compared with area-based cycling proportions from the census using linear regression, with the sole aim 

at this point of just validating the cost functions. 
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3. Synthesis of commuting flow data at OA (Output Area)/WZ (Workplace Zone) level: Generate 

representative origin-destination pairs using census data constraints. 

Across an area the size of an MSOA, there can be large variations in cycle route quality. Calculating route 

costs for more finely-grained OA-level (40-250 households) commuting flows should give more 

representative results. To overcome restrictions on availability and usage of 2011 OA-level commuting flow 

data, such data will be synthesized based on census constraints data in the form of commuting distance 

ranges and numbers of cyclists for each OA origin and (separately) for each WZ destination. By additionally 

considering distances between OA and WZ PWCs, it should be possible to synthesize a set of OA-WZ flows 

which would be representative of the actual flows. This will be initially attempted at MSOA-level for 

validation (as actual MSOA flows are known), then repeated at OA-WZ level to provide an input to objective 

4. Additionally, plotting synthesized OA-WZ routes will give a picture of the potential cycling network 

demand across the city which can be compared to the location of existing cycling infrastructure to 

determine how well it might be suited to commuting. 

4. Residential area analysis at OA-WZ level: Repeating and extending the area analysis at the smallest 

census area level to make full use of fine-grained routing. 

Although routing cost functions generated for synthesized OA-WZ flow data cannot be validated against 

known flows, if converted to area-based cost functions (as in objective 2) then a similar regression can be 

used to validate them against (known) OA-level cycle commuter counts and to determine how much 

bearing each cost function has on the desired outcome. Some compensation for other factors will be made 

by the addition of other OA-aggregate variables identified in the literature as potentially important 

determinants. 

 

1.2 Outline of the Document Structure 

 Chapter 2: Context of cycle commuting within the UK 

 Chapter 3: Literature review for on determinants of cycle mode commuting choice and associated 

research methods 

 Chapter 4: Critique of data sources available and details of those used in this study. 

 Chapter 5: Methodology for creating synthetic flow data, cycle-routing, generation of cost 

functions and regression. 

 Chapter 6: Results (with supporting correlation tables in Appendix III) 

 Chapter 7: Analysis of results 

 Chapter 8: Conclusions 
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2 Context: Utility Cycling in the UK 

2.1 Cycling in the UK 

Since 1949, UK cycling rates have fallen dramatically (Figure 1). Wardman et al (2007) report that even 

recently (the period 1992-2002) there was a 20% drop in number of bicycle trips per person, with the cycle 

commuting share falling in successive censuses: 3.8% (1981), 3.0% (1991), 2.9% (2001). However, NTS 

2008-2010 shows cycling as a main commuting mode only accounts for 31% of all cycling time (Goodman, 

2013), with part-journey or occasional commuting accounting for a further 10% of cycling time. The 

distribution of cycling is not spread evenly, either geographically or demographically; 2011 census data 

reveals that age/sex profiles for cycle commuting in London are very distinctive, but have smaller variations 

elsewhere (ONS, 2014b, p13). Although average cycle commuting mode proportion was unchanged from 

2001 to 2011, there was a decline in absolute cycle commuter counts in most local authorities, but also 

dramatic increases in certain cities: Brighton (+109%), Bristol (+94%), Manchester (+83%), Newcastle 

(+81%) and Sheffield (+80%). The current National Transport Model predicts that cycling will rise in 2015 

then fall for many decades (DfT, 2011). 

 

Figure 1: Great Britain Bicycle Usage (billion vehicle miles) (Source: Keep, 2013) 

Building cycling-specific infrastructure has been seen by many as a large part of the solution in reversing 

the decline. In a UK-based correlation model, Parkin et al (2008, p105) predicted that creation of traffic-free 

radial routes in cities could increase cycling by between 17% and 101%, depending on hilliness. In a 

separate study, Wardman et  al (2007, p14) forecast a best-case scenario (completely traffic-free 

commuting routes) of an increase of 55% (bringing cycling to a total of 9% of all commuters). 

Two non-governmental organisations that have played a major part in promoting cycling are the CTC 

(national cycling charity) whose current “Space for Cycling” campaign focuses on lobbying local councils for 

high standards of cycle-friendly planning and design, and the sustainable transport charity Sustrans. 

Sustrans (which started as a local campaign group in Bristol) aims to promote walking, cycling and public 
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transport. It has been responsible in conjunction with local councils for the development of the National 

Cycle Network which was initiated in 1995 with a £42.5 million grant from the National Lottery. 

In 1996 the UK government produced a National Cycling Strategy to quadruple the number of cycle trips by 

2012 (Golbuff and Aldred, 2011, p15). However, such plans were already falling well short of targets by 

the time of a revised plan in 2000 (Gatersleben and Appleton, 2007, p303). Investment was made in 6 

Cycling Demonstration Towns in 2005, plus a further 11 in 2008 and Bristol as the first Cycling City in 2008. 

(Golbuff and Aldred, 2011, p29). Government cycle promotion initiatives since then include the 2010 

Active Travel Strategy for England and £1 billion funding for local sustainable transport initiatives 

(Goodman, 2013, p1). In 2013, the All Party Parliamentary Cycle Group (APPCG) produced the “Get Britain 

Cycling” report (Goodwin, 2013) bringing together an (internationally) wide range of statistics and making 

policy recommendations. The government’s response to this (the cross-departmental ‘Cycle Delivery Plan’) 

is due to be published later in 2014. 

2.2 Cycling in Bristol 

"More people in Bristol commute to work by bicycle or on foot than any other Local Authority in 

England and Wales" (Bristol City Council, 2014b) 

The Bristol “Cycling City” investment programme (2008-2011) was a multi-faceted project: providing new 

cycle infrastructure, but also taking ‘softer’ approaches to engage with the population such as the “Bike It” 

schools programme and providing personalised travel planning (Greater Bristol Cycling City, 2011). Though 

effective in increasing numbers it was criticized by some with local authority representatives reportedly 

stating that it “targeted middle-class commuters" (Aldred, 2014). The visualisation of 2011 census data 

cycle commuting flows (Figure 1) gives a snapshot of cycling in Bristol at the end of this period. 

Various cycling groups worked with Bristol and South Gloucestershire councils and consultants Arup to 

produce the “Greater Bristol Cycling Strategy 2011-2026” report (SAP, 2010) as an input to the follow-on 

Joint Local Transport Plan 3 (JLTP3) (West of England Partnership, 2011), but this was reportedly never 

adopted (Bristol Cycling Campaign, 2014a). JLTP3 is a join plan between  the 4 adjacent Unitary Authorities 

(UA) of Bristol (City), Bath and North-East Somerset, South Gloucestershire and North Somerset. £30 

million of the funding for JLTP3 was awarded from the (national) Local Sustainable Transport Fund (LSTF). 

Working within the framework of the JLTP3, the ‘WEST’ Outcome Monitoring project of the University of 

the West of England (UWE) is not just evaluating the impact of LSTF spending, but also advancing the 

bringing together of a wide range of existing surveys and data sources and making plans for further data 

collection (Chatterjee et al, 2013a) – all of which could prove invaluable for future research by others.  

The new Bristol Cycling Strategy (Bristol City Council, 2014a) was developed in collaboration with various 

campaign groups, with the proposed network viewable on the Bristol Cycling Manifesto website (Bristol 

Cycling Campaign, 2014b). 
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Figure 2: 2011 Census Bicycle Commuting Flows (greater than 7) between MSOAs around Bristol 
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3 Literature Review 

3.1 Introduction 

The promotion of cycling has in recent years become a significant policy focus in many countries and there 

is a wide body of literature (much of it quite recent) considering cycle mode choice for utility journeys. Two 

recent review papers give very thorough summaries of the many different factors: 

 Heinen et al (2010): general focus on a wide range of factors affecting commuting by bicycle 

 Pucher et al (2010): more specific focus on types of infrastructure and effects of cycling-promotion 

government policies 

3.2 Factors Influencing Cycle Mode Choice 

Table 1 summarizes the factors considered in this section, in the order they are discussed. 

Table 1: Summary of factors affecting commute mode choice 

General Journey Factors: Location Factors: 

Distance 

Time (Duration) 

Effort Required 

Safety (and Perceived Safety) 

Public Transport Alternatives 

 

Residential Density 

Workplace facilities 

Environment (Climate and Weather) 

Cycling Infrastructure: Personal Factors: 

Network Integration 

Complexity and continuity 

Cycle Lanes vs. Traffic-free Paths 

Segregation vs. Shared Space 

Gender and Age (Demographics) 

Socio-Economic Factors 

Psychology and Attitudes 

 

3.2.1 General Journey Factors 

Journey Distance, Time: Unsurprisingly, the additional time often required to commute by bicycle rather 

than motorized means is a major factor that comes up in most studies – one of the biggest dissuading 

factors alongside safety (Parkin et al, 2007b) and typically the top factor in choosing a commuter cycle 

route (Stinson and Bhat, 2003). In Britain, only 1% of cycle journeys are greater than 5 miles (Gatersleben 

and Appleton, 2007, p303). However, where traffic congestion is particularly bad cycling can be quicker – 

being able to cycle past stationary traffic can be a strong motivating factor for some cyclists (Gatersleben 

and Appleton, 2007). To relate journey time to distance, it is important to consider achievable cycling 

speeds and effort required; in considering cycling infrastructure design, Parkin and Rotheram (2010) 

estimate 22kph (14mph) on the level as a realistic (85th percentile) speed.  

Effort Required: This becomes less correlated with distance where there are large variations in hilliness and 

stop/start event locations such as traffic lights and busy junctions. Considering limits of a typical cyclist’s 

power output and likely sustained effort Graham (1998) made a mathematically rigorous analysis of 
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variations of cycling effort required due to hills. Philips et al (2013) calculated “pedalling power” and 

consequent speed based on age, weight, height and fitness. The online CycleStreets.net cycle-routing 

engine calculates energy used based on equations for the fundamental physics and human physiology of 

cycling defined by Di Prampero et al (1979). However, though acknowledging tiredness as a significant 

detractor, Wardman et al (2007) were surprised to not detect hills as having significant impact in their 

survey even though it was in a relatively flat area. Parkin et al (2008) used a measure for the effect of hills 

based on the number of 1km squares in an area with gradients above an arbitrary steepness.  

Safety (and Perceived Safety): This was typically the biggest issue for new cyclists (Cope et al, 2003, p16). 

Wardman et al (2007) highlight perceived danger as the principal deterrent. Vandenbulcke et al (2011) 

noted high traffic volumes as a major detractor alongside actual cycling accidents. However, where there 

are large numbers of cyclists their safety improves due to becoming more visible to motorized traffic 

(Pucher et al, 2010, pS121). Actual and perceived safety has been noted as often very different in many 

studies (Heinen et al, 2010). Care must be taken if cycle accident rates are used as a measure of risk as it 

can be proportional to the number of cyclists and also unreliable as many accidents go unreported (Parkin, 

2004, p147). Perceived cyclist safety can affect motorist behaviour too – in experiments (Parkin and 

Meyers, 2010), drivers would pass closer to a cyclist wearing a helmet. 

3.2.2 Cycling Infrastructure 

Varying from (at its most basic) routes excluding certain traffic (such as shared bus lanes) to dedicated 

cycle-only paths, infrastructure has the potential to improve the appeal of a cycle commute. More detail 

will be considered here than in other sections because effects of infrastructure as a determinant of cycle 

mode choice are somewhat contentious in the literature and very dependent on infrastructure type. 

3.2.2.1 Network Integration 

An “If You Build Them, Commuters Will Use Them” hypothesis was proposed by Nelson and Allen (1997) 

based on the study of the effect of new cycle infrastructure in 2 US cities. However, this was rebuffed by 

Cleaveland and Douma (2009) who extended the study to 6 other US cities. They found that for new 

infrastructure to have an impact it had to be aligned with commuting routes, have good network 

connectivity and be accompanied by suitable publicity and promotion. Pucher et al (2010) also noted that 

individual infrastructure interventions had limited effect, but combined with a coordinated package of 

measures to promote cycling could have a much bigger impact than the sum of its parts. In Europe, the 

increase in impact of cycle infrastructure integrated into city-wide cycle networks has been shown in 

Freiburg, Germany (Buehler and Pucher, 2011). In a mathematical graph theory based analysis of the effect 

of network quality on cycle commuting across 75 US cities, Schoner and Levinson (2013) concluded that 

network density was the most important factor, followed by directness, then lack of fragmentation. 

However, where there are large increases in cycling uptake but only limited provision of cycling 
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infrastructure on a route, its impact will reduce as it approaches its “carrying capacity” (Lovelace, 2011, 

p2081). 

Parkin et al (2007b, p7) notes that Dutch cycle design guidance (CROW, 1993) formed the basis for UK 

design recommendations.  This emphasized the importance of a coherent and comprehensive network 

serving required origins and destination with the minimum of detours. The notion of route ‘directness’ or 

‘circuitry’ (ratio of Euclidean distance to routed distance) was emphasized as an important factor by Philips 

et al (2013). 

3.2.2.2 Complexity and Continuity 

Quiet roads can form important elements of a cycle network, though in urban areas this can lead to 

complicated routes through residential streets. The appeal of a cycle network is reduced if it cannot be 

easily followed (particularly when a cyclist first tries to establish a commuting route) – this requires 

coherent mapping and signing (Cope et al, 2003) and the avoidance of excessive turn frequency (Broach et 

al, 2012). The ultimate benefit of using cycle infrastructure on a journey is not dependent on the number of 

bits of infrastructure that can be strung together, but on actual time spent using the infrastructure itself 

(Wardman et al, 2007). 

3.2.2.3 Cycle Lanes vs. Traffic-free Paths 

Although on-road cycle lanes (or shared lanes) encourage separation of much motorized traffic from 

bicycles, Parkin et al (2007a) noted that the perception of risk was only significantly reduced on traffic-free 

paths. Indeed, in experiments (Parkin et al, 2007b) found that interviewees shown roundabouts with 

marked cycle lanes often counter-intuitively perceived them as more dangerous than those without; he 

concluded that it was perceived that there was more need for cycle markings to cope with added danger. 

However, traffic-free routes were often disliked due to street furniture obstacles, poor surfaces, 

inconvenient routes and pedestrian conflict on shared-use paths (an issue even acknowledged by Sustrans 

(Cope et al, 2003)). Cleaveland and Douma (2009) found that off-street routes did not seem any better than 

on-street routes in increasing cycle commuting take-up. They reasoned this was primarily due to not being 

on commuting routes – often being hidden on old railway or river paths. 

Schoner and Levinson (2013) noted that although in stated preference surveys cycle commuters said they 

would happily detour to use such routes, analysis shows that they are actually very sensitive to route 

length. In an analysis of 90 US cities particularly focused on the effects of bike paths and lanes on 

commuting (but controlling for a very wide range of factors), Buehler and Pucher (2012) found no 

significant difference in their effect on cycle commuting. Gatersleben and Appleton (2007, p310) even 

noted that cycle paths are sometimes avoided despite safety issues. In a study to monitor routes of 79 

cyclists using GPS tracking devices, Yeboah and Alvanides (2013) noted that over half did prefer to cycle on 

the cycle path, though females expressed a stronger preference than males. 
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However, although traffic-free routes are often not ideal for commuting, they can play a major role in 

encouraging leisure and less time-pressured utility cycling. In 2003, two-thirds of cyclists surveyed on the 

UK National Cycling Network (NCN) were leisure cyclists (Cope et al, 2003, p14) and indeed the “primary 

aim” of the NCN had been to encourage new people to start cycling. Despite government surveys (limited 

to road routes) showing little change in cycling numbers for the period 1998-2004, broader survey work by 

Sustrans showed an increase of over 40% in (largely traffic-free) NCN use (Cope et al, 2007). 

3.2.2.4 Segregation vs. Shared Space 

In a (UK) analysis of urban traffic-free cycle paths Jones (2012) concluded that for an effective increase in 

utility cycling a combination of “segregated cycle facilities on major roads” and cycle promotion was 

needed. Segregation aims to combine the directness of following roads with guaranteed space and the risk 

reduction of traffic-free off-road routes. Although in the UK, this is typically just a white line to mark 

separation from pedestrians on a pavement, potential pedestrian conflict is reduced when there are 

physical barriers (such as kerbs or bollards) placed between the cycle lane and both pedestrians and cars. In 

a recent analysis of such “Protected Bike Lanes” in 5 cities in the US (Monsere et al, 2014), increases in 

cycling on these roads varied from +21% to +171%, with 10% of users switching from other modes of 

transport. 

There has recently been much debate about the merits of an alternative “shared space” approach that 

removes most of the road markings and street furniture – “all street users moving and interacting in their 

use of space on the basis of informal social protocols and negotiation” (Hamilton-Baillie, 2008, p166). 

Although some of these schemes are quite radical in their proposals to transform places like busy junctions, 

they have been implemented in a less controversial way in many residential areas as ‘home zones’. To be 

successful “shared space” depends on the more vulnerable pedestrians (and cyclists) feeling confident to 

move around in the space and for drivers to have a suitably raised alertness to changes in priority (Kaparias 

et al, 2012). However, based on further study of one of the official UK shared space test sites in Ashford, 

Moody and Melia (2013) contested many of the claims for shared space over segregation, noting particular 

difficulties in high traffic flow situations. 

3.2.3 Location-based factors 

Residential Density:  Higher housing density often correlates with increased cycle commuting - possibly 

due to lack of available car parking (though bike storage can be an issue for small properties) and reduced 

car speeds (Parkin et al, 2008). Such areas are often close to urban centres (Heinen et al, 2010, p62). 

Workplace Facilities: Facilities such as showers and secure cycle parking (or lack of car parking) can strongly 

affect cycle commuting (Heinen et al, 2013; Parkin et al, 2007b), with social attitudes also being important. 

This is helped by government incentive schemes like the UK ‘cycle to work’ bike-funding scheme and 
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employer-based promotional programmes (Pucher et al, 2010, pS113). However, some have measured this 

as only having a minor impact on cycling (Wardman et al, 2007). 

Environment: Non-cyclists trying cycle commuting in a UK trial (between February and April) reported their 

main issues as darkness and poor weather (Gatersleben and Appleton, 2007, p307). Although climate, 

weather and seasonal variations in temperature and daylight can have a statistically significant impact 

(Parkin et al, 2008; Dill and Carr, 2003) such factors can be considered invariant across the proposed area in 

this analysis. 

Public Transport Alternatives: given suitable availability, cost and convenience these can be a direct 

competitor to cycling (Rietveld and Daniel, 2004, p535) 

3.2.4 Personal factors 

3.2.4.1 Gender and Age (Demographics) 

Although the 2001 and 2011 censuses of England and Wales showed distinct peaks in cycling around the 

30-34 age group in London, the variation was much reduced in the rest of the country (ONS, 2014b); in 

2011 there was a slight dip in numbers in the 30-39 age group for those commuting less than 5km, with the 

peak being in the 45-49 age group. However, different age groups are sensitive to quite different factors 

(Cope et al, 2003) with young people most concerned about saving money and journey efficiency, whereas 

those age 35-44 concerned more about safety and personal fitness. For the 2001 census, Parkin et al 

(2007b) found higher numbers in the under-35 age group and considered this likely to be due to more 

central (urban) living and less likelihood to own a car. Generally the probability of cycle commuting reduces 

with older groups (Wardman et al, 2007). Heinen et al (2010, p69) noted that a large majority of studies 

found cycling was more popular with men than women. Gatersleben and Appleton (2007) concluded that 

this imbalance was largely an issue requiring culture change. 

3.2.4.2 Socio-Economic Factors 

Cycling propensity has been seen to reduce with increasing affluence (Schoner and Levinson, 2013) and 

with lower social groups (Badland and Schofield, 2006). However, this is not clear cut: in an analysis of UK 

national surveys, Goodman (2013) concluded that though historically cycling was less prevalent with 

increased affluence, by 2011 it was largely equal across groups and the trend suggests that in future it will 

increase with affluence. He noted that “higher social grade” increased likelihood of having cycled in the last 

week. Across a wide range of papers, Heinen et al (2010) concluded that the effect of income is ambiguous, 

though car ownership has a strong negative effect. However, Parkin (2004) found that although households 

with multiple car ownership were less likely to cycle commute, those with one car were actually more likely 

to cycle than those with none. Family or household responsibilities such as caring for children apply 

practical constraints on opportunities for cycling (Pooley et al, 2011). 
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3.2.4.3 Psychology and Attitudes 

Different groups of people have different reasons for not cycling (Cope et al, 2003). This is often dependent 

on cycling experience and frequency (Gatersleben and Appleton, 2007); they proposed use of a 

“transactional model” to identify factors that cause changes between states – noting in their experiments 

how non-cycling commuters’ perceptions were changed by actually trying cycle commuting. The UK 

Department for Transport (DfT) guidance since 2008 attempts to do something similar, considering 5 

classes of cyclist (Parkin and Rotheram, 2010). Lovelace (2011) noted that in the last 10 years that the DfT 

emphasis for promoting cycling has changed from just infrastructure building to more ‘soft’ approaches to 

improve people’s understanding and perceptions.  Correlation between cycle commuting and location does 

not necessarily indicate an area encourages more people to cycle – there is often a process of self-selection 

where those already prone to cycling move into areas better for cycling (Schoner, 2013; Handy and Xing, 

2011, p109). 

The Lancaster University study “Understanding Walking and Cycling” (Pooley et al, 2011) outline many 

psychological and cultural considerations both at home and in the workplace that affect propensity to 

cycle, including whether cycling is considered the norm for an individual’s circumstance. Parkin et al 

(2007b, p9) emphasize the need for better modelling of choice mechanisms based on such factors – 

including “life stage”. Chatterjee et al (2013b) propose that for significant increases in cycling a big change 

in psychology and attitudes is required. Pucher et al (2010, pS113) review a wide range of papers on the 

‘soft’ aspects of promoting cycling including working with schools and employers, offering training, 

increasing access to bicycles as well as various marketing and awareness programmes. In their later paper 

on policies to promote cycling, Pooley et al (2013) focus on what it would take to transform social attitudes, 

economic and spatial environment so that “walking or cycling for short trips in urban areas is perceived as 

the logical and normal means of travel and using the car is viewed as exceptional.” 

3.3 Research methods 

3.3.1 Survey Types 

Preference surveys: these can be helpful in understanding reasons people choose to cycle and can be sub-

divided into ‘stated preference’ (SP) and ‘revealed preference’ (RP) surveys. RP survey responses are more 

valuable as they show actual choices made by individuals, but are more difficult and time consuming to 

carry out (Stinson and Bhat, 2003). RP surveys can often be very practical in nature, with some using GPS 

tracking to reveal cyclists’ actual behaviour (Yeboah and Alvanides, 2013; Dill and Gliebe, 2008). Cope et al 

(2007, p2) highlights the (SP) National Travel Survey (NTS) as a key national transport data source. 

Quantitative measures: In a review of the literature, Philips et al (2013) emphasized the strong preference 

for quantitative measures in policy making both in the UK and internationally. Though there are many 

studies exploring the subtleties of certain aspects (such as perceptions of risk), these are often based on 
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relatively small surveys or are more qualitative in nature. Pucher et al (2010) looked at forty studies 

comparing effects of cycle lanes and cycle paths, noting the rarity of quantitative results. 

Aggregate/Non-aggregate data:  Data from surveys with very large sample sizes (such as censuses) are 

often only available in aggregate format. Total counts for various characteristics are known but very little 

cross-tabulation can be done. Wardman et al (2007) stated that though cycling models based on such 

aggregate data are common they are “not well suited to the analysis of cycling attributes in detail.” 

However, Parkin et al (2008) noted the fact that aggregate census data being geographically specific 

allowed additional incorporation of data such as hilliness and thus was “a significant advance over 

disaggregate modelling where the hilliness effect has not been modelled successfully (e.g., Wardman et al. 

2007).” – but additionally highlighted the wide range of non-aggregate modelling techniques applied to 

cycle mode choice in the literature. One of the risks of non-aggregate surveys is in how they select 

participants; Schoner (2013, p10) criticized the conclusions of Wardman et al (2007) for not reasonably 

compensating for exclusion of those not contemplating cycling. 

3.3.2 Data Synthesis and Modelling 

Transport modelling: There are a wide range of modelling and simulation methodologies in use. The 

Transport Analysis Guidance (Webtag) website (Dft, 2014a) provides recommendations on many modelling 

techniques for evaluating transport project proposals. However, much traditional transport modelling has 

too coarse a spatial resolution for consideration of walking or cycling (Iacono et al, 2010, p134), with the 

zone size of (vehicular) flow models causing many cycling trips to not leave the origin zone. Consequently 

they proposed a better approach for evaluating walking and cycling would be to use GIS network analysis. 

To try to overcome such issues, Eash (1999) built a model of cycling trips at small area level which was 

effectively an early Agent Based Model (ABM), with random trip data generated based on probabilities. 

Microsimulation: This is a method of creating synthetic populations from multiple data sets, with 

techniques such as simulated annealing, deterministic reweighting and Monte Carlo simulations being used 

to iterate the data for a better model fit. Harland et al (2012) outlined these techniques and considered the 

effects at different geographical scales. Lovelace et al (2014) in applying microsimulation to commuter 

behaviour noted that although microsimulation data is not real, its power lies in providing a good 

representation of small area variations. They also highlighted the batch-processing potential of new routing 

tools to better investigate the impact of the travel network. 

Origin-Destination (OD) Synthesis: In order to predict road network load estimation, sophisticated OD 

synthesis has been used, based on factors such as measured traffic volumes, historic records and predicted 

commuting times (Sherali et al, 2004), which can be split into matrix-estimation and (gravity model-based) 

parameter-calibration methods. Ding et al (2007) outline a matrix-estimation method addressing some of 

the problems of the data being underspecified using Bayesian models and iterative procedures. Barbour 
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and Fricker (1994) outlined a much simpler OD synthesis algorithm (SHAPE-2) that was not dependent on 

having historic OD data, but (similarly to the constraints available in this study) used flow counts at origins 

and destinations and a gravity model for routing between them. 

Simulated Origin-Destination Routing: In a methodology designed to identify suitable locations for new 

cycle infrastructure, Larsen et al (2013) used known OD data for other transport modes as a basis for 

“potential” cycle trips. Although the routing method was quite a crude shortest-distance one, the results 

when aggregated to 300m grid cells were considered informative enough to identify appropriate cycle 

transport corridors. 

3.3.3 Route Choice Analysis 

Compared to mode or destination choice, route choice is a complex problem with a much larger range of 

possibilities (Prato, 2009, p67) although for regular commuting this is reduced and made more predictable 

as a cyclist would have acquired a good overview of the network. This can be broken down from route level 

to ‘link’ level analysis (Stinson and Bhat, 2003), where each ‘link’ (path between intersections) is often 

assessed by qualitative weighting of various attributes. Ehrgott et al (2012) argued that information can be 

gained by keeping separate the cost functions used in choosing routes as they might apply differently to 

different types of cyclists. 

Although most studies looking at detailed cycle routing focus on how cyclists choose routes rather than 

whether people choose to cycle or not, route cost functions based on actual routes that these studies 

found gave best fit in a model should also give a good indication of appropriate cost functions for mode 

choice. In an analysis of 2435 GPS-tracked utility cyclists in Zurich, Menghini et al (2010) found that routed 

distance dominated route choice, followed by the steepness of maximum gradients (average slope was 

found insignificant). Start/stop events due to traffic controlled junctions were found to be a big detractor. 

Traffic-free bike paths were the only other factor to make a contribution, but this was less significant than 

stops. In a smaller study of 164 GPS-tracked cyclists in Portland Oregon, Broach et al (2012) found 

directness was a major factor that also scaled linearly with distance. Stop/start events were also generally a 

detractor, but where cyclists had to make turns in the presence of heavy traffic, traffic-controlled junctions 

were a positive factor. For hills, proportions of routes at various slope gradients proved the most useful 

variables, with cyclists willing to cycle 70% further on the flat to avoid an incline of 2-4%. Although traffic-

free paths were preferred, cycle lanes on arterial roads proved no more appealing than parallel quieter 

(typically residential) roads. 

Various studies have been done using estimated routing based on commuters’ origins/destinations: Larsen 

and El-Geneidy (2011) used an online survey of 2917 cyclists to model how cyclists trade directness against 

cycle infrastructure. However, this used a fairly crude measure of shortest network paths to link 

origins/destinations to the cycle infrastructure specified as used by the respondents. 
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3.3.4 Mode Choice Analysis 

There are many quantitative longitudinal studies typically considering the effect of changes in 

infrastructure on cycle commuter count: Pucher et al (2010, pS118) provide a comprehensive review of 

these since 1990. However as this study considers mode choice in absolute terms, recent major cross-

sectional quantitative studies are of more interest (see Table 2) – in particular which (non-routing) variables 

are significant factors that could help in validating a model against mode choice outcomes. 

Table 2: Selection of large cross-sectional quantitative bicycle mode choice studies since 2000 

Reference Locations Methodology Datasets Notes 

Dill and 

Carr, 

2003 

35 large US Cities, 

expanding an 

earlier study 

(Nelson and Allen, 

1997) 

Aggregate data 

regression 

2000 Census  Level of bike 

infrastructure 

significantly correlates. 

Cars per household 

strong negative 

correlation. 

Rietveld 

and 

Daniel, 

2004 

103 municipalities 

in Holland 

Aggregate data 

regression 

National statistics, 

plus Fietsersbond 

(Dutch Cyclists 

Union) collected 

data 

Policy focused, but finds 

major factors: altitude, 

city size, age, ethnicity, 

car park costs, safety, 

travel time (few stops) 

Wardman 

et al, 

2007 

Secondary data for 

Great Britain, plus 

primary data from 

cities of Leicester, 

Norwich, York and 

Hull 

Non-aggregate data. 

Hierarchical “Joint RP-

SP Multinomial Logit 

Mode Choice Model” 

NTS 1985-1997 

(23926 records, RP). 

New RP survey of 

969 people. Two 

new SP surveys of 

2115 & 3106 people. 

Claims “most 

comprehensive and 

largest model”. 

+55% cycling increase 

possible with full 

segregation 

Parkin et 

al, 2008 

All of England and 

Wales 

Aggregate data binary 

logit regression model 

at ward level. 

“has contributed to 

official government 

[Webtag (DfT. 2014a)] 

guidance on 

estimating  changes in 

levels of cycling use” 

2001 Census, Income 

Deprivation (ID), new 

perceived risks 

survey, quantity of 

cycle infrastructure, 

traffic estimates, 

road condition, Met 

Office weather 

records. 

Model predicts 81%. 

“Saturation point” 

estimated at 43% of 

commuter trips. Major 

factors: hills, distance 

rain, temperature, 

population density. 

Lawson et 

al, 2013 

Ireland Aggregate. multiple 

logistic regression 

(MLR) 

Irish 2006 census Gender, car ownership 

and journey distance 

strongest factors 

Schoner, 

2013 

Twin Cities 

(Minneapolis, St 

Paul) in US 

Non-aggregate data. 

Negative Binomial  

regression 

New postal survey of 

1303 people. 

Recommended 

improvement is to 

analyze actual 

commuting routes 

Heinen et 

al, 2013 

4 municipalities in 

Netherlands 

Non-aggregate data. 

2 binary logit 

regression models 

New internet survey 

of 4299 people 

Big focus on facilities at 

work 
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In the conclusions to some of these analyses, methodology recommendations were made for better route 

and infrastructure analysis: Parkin et al (2008) could not detect significant (expected) perceived risk effects 

associated with variations in cycle infrastructure, but noted they only had infrastructure mapping for 24% 

of the population. Schoner and Levinson (2013) found that in their model network analysis alone explained 

50% of the outcome and recommended analysis of actual commuting routes and population adjacent to 

networks. 
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4 Data Sources 

4.1 Relevant Data Sources Available 

There are a large number of data sources available relevant to the analysis of cycle mode choice– Table 3 

outlines those that were considered for Bristol; much survey data was either limited in detail to Local 

Authority level or had sample sizes too small to guarantee reliability at smaller geographies. 

Traffic counts: It was hoped to use traffic count data for two purposes: motorized traffic for giving a 

measure of busyness on routes and cycle traffic data as a means of validating the final cycle commuting 

model. Unfortunately, motorized traffic counts are only made in a limited number of locations (mainly on 

major roads) which a cycle routing engine would generally try to avoid. In order for cycling route cost 

functions to be developed that would rate volume of motor traffic along the route, it would be quite 

complicated to make use of this sparse dataset. However, if access to route data from a transport network 

model calibrated by such traffic counts was available this could be invaluable. For validating with cycle 

commuting validation, the data is problematic in that it is for complete days (rather than just commuting 

times), so will include much non-commuting cycle traffic. In the JLTP3 data, different locations were 

counted on different days and at different times of the year, so although they might be good indicators of 

changes in traffic flow, they are less suited for comparing with each other given that cycle mode choice can 

be quite temperature/weather dependent. For this reason, it was decided to use only 2011 census data for 

cycle counts (see section 4.3). 

Cycle Infrastructure Mapping: Although OpenStreetMap data was chosen for routing analysis (see next 

section), the Sustrans data proved invaluable for visualisation. 

Characterizing Population: LSOA-level MOSAIC and Indices of Deprivation data could be mapped down to 

the intended final OA-level of analysis to provide useful income data missing from the census. However, it 

was decided that as the main focus of the study was on the contribution of routing measures, for simplicity 

population data would be limited to that available directly at OA-level from the census. 

Table 3: Data Sources relevant to Bristol Cycle Commuting Analysis 

Dataset (source) Relevant Data Comments 

2001 Census of England and 

Wales 

(ONS, 2014a) 

Aggregate population data and 

commuting flow data 

Unrivalled sample size, but some 

problems with errors introduced to 

prevent disclosure of individuals. 

2011 Census of England and 

Wales 

(ONS, 2014a) 

Aggregate population data and 

commuting flow data 

Some data only just becoming 

available. 

Experian MOSAIC 

(UK Data Service, 2014) 

Demographic data at lowest 

(LSOA) level 

Available for periods 2004-2005 and 

2008-2011. 

Indices of Deprivation (ID) 2010 

(ONS, 2014e) 

Income Deprivation Domain at 

lowest (LSOA) level 

From metadata: “some of the indices 

used to produce the index are 
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derived from the 2001 Census and in 

other places it has not been possible 

to update the indicators since ID 

2007”. 

National Travel Survey (NTS) 

(UK Government, 2014) 

How, why, when and where 

people travel 

Annual: 20,000 people in 8,000 

households. Acknowledged volatility 

in cycling statistics due to small 

numbers. 

Active People Survey 

(DfT, 2014b) 

Measures of utility cycling by 

frequency (e.g. 3 times a week) 

National telephone survey of  over 

160,000 but only as little as 500 

persons per local authority 

Annual Population Survey 

(ONS, 2014b) 

Information about commuter 

flows 

(Annual): 300,000 people. Data 

aggregated to local authority level. 

Bristol Quality of Life Survey 

(Bristol City Council, 2014c) 

Non-aggregate cycling data tied 

in with socio-demographics 

(Annual): 3500-5000 people. Lowest 

level of detail for cycling statistics is 

ward level. 

DfT Traffic Counts 

(DfT, 2014c) 

Motorized (and some cycle) 

traffic counts on major roads 

(101 in Bristol) and a small 

number on minor roads 

Limited sampling locations, with 

none on traffic-free National Cycling 

Network (Cope et al, 2007). 

JLTP3 Cycle Matrix 

(West of England Partnership)  

Cycle Count Data across the 4 

Unitary Authorities surrounding 

Bristol. Includes counts on 

many of the major traffic-free 

cycle paths. 

(Available by permission only) 

Large number of cycle traffic counts 

over several years, but in limited 

number of locations. 

Boundary Data 

(ONS, 2014d; EDINA, 2014a) 

Census boundaries and 

Population Weighted Centroids 

(PWC), Built Up Areas 

(EDINA limited to academic access) 

Formed the basis for all spatial data 

calculations in the analysis. 

Ordnance Survey Data 

(EDINA, 2014b) 

OS Terrain 50 DTM 

(Digital Terrain Map) 

(EDINA limited to academic access) 

Useful as a second source for 

assessing hilliness of routes. 

OpenStreetMap 

(OpenStreetMap, 2014) 

Location of road and cycle 

network with details of cycle-

specific infrastructure 

Crowd-sourced, but remarkably 

detailed, though inconsistent in 

classification in places. 

Sustrans cycle network GIS 

database 

Detailed layout and thorough 

classification of different types 

of cycle infrastructure 

(Available by permission only) 

Appears more accurate and 

consistent than OpenStreetMap. 

Ordnance Survey “Urban Paths” 

GIS data 

Routes not available to motor 

traffic but available to bicycles 

(Available by permission only) 

Generally much less comprehensive 

than OpenStreetMap or Sustrans 

data. 
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4.2 OpenStreetMap and CycleStreets.net 

The crowd-sourced OpenStreetMap project provides extensive details of cycle routes and existing cycle 

infrastructure types even if it appears not quite as comprehensive, consistent or up to date as Sustrans 

internal data. However, the data is publicly accessible and even downloadable in its entirety for offline 

processing. Several publicly available routing engines can be applied to OpenStreetMap data (pgRouting, 

Routino, Osmar, Osmosis, Graphhopper). CycleStreets.net was chosen as a source for this study as it is now 

a reasonably mature product, comes recommended by Sustrans and its “Journey Planner” API 

(CycleStreets.net, 2014) provides additional data that can form the basis (with minor modifications) for 

suitable route cost functions. 

4.3 2011 Census of England and Wales 

This provides the basis for most of the numerical analysis within this study and quantifies the key outcome 

variable: cycling as a proportion of commuter’s main travel method. Although (as discussed in the literature 

review) this is a good proxy for both cycle commuting and utility cycling in general, its limitations should be 

considered. A big shortcoming is that it does not include any aspect of frequency of cycle commute or 

partial commute (such as to a train station). It also does not take account of seasonal variations – the 

census is recorded in the month of March which can be cold, dark and wet. Thus it would be expected that 

the census would underreport the average proportion of cycle commuting trips. 

A key problem with aggregate data is that characteristics that might define minority groups (such as cycle 

commuters) may be hidden by the dominance of others. However, as there is a tendency for similar people 

to group together (Tobler, 1970, p236), this is not as significant problem as if a random sample of 

population was made. Selecting data for the smallest available census geographic areas (OAs) also reduces 

the aggregation impact, but potentially at a cost of errors intentionally introduced to prevent individual 

disclosure, particularly affecting small counts. In the 2001 census, the procedure of Small Cell Adjustment 

(SCA) randomly changed all counts of 1 or 2 to either 0 or 3. Additionally random record swapping was 

applied to move individual’s details between areas. Fortunately, the processing applied to the 2011 census 

data is much less damaging and was limited to “smart” record swapping - only done where small counts risk 

identifying individuals. Additionally, record swapping was done to as nearby geographies as possible (ONS, 

2014c). Because SCA was not used in 2011 data, there is no increase in errors associated with OA data 

removing one of the previous benefits of using larger areas.  

Thus although OA-level flow data was only available for the 2001 census, all data for this study was taken 

from the 2011 census to avoid those errors as well as to provide more timely data given the large changes 

in cycle infrastructure and major employers in the Bristol area since 2001. Additionally, the 2011 census 

introduced the very useful new ‘Workplace Zone’ (WZ) geography which is scaled to employment rather 

than residential populations and thus more numerous at commuting ‘destinations’. Table 4 outlines the 

tables and variables used from the 2011 census. 
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Table 4: 2011 Census Variables Used 

Table Title Geography Notes 

WU03EW Location of usual residence and 

place of work by method of travel to 

work 

MSOA Origin-Destination Flow Data 

QS701EW Method of travel to work, Usual 

Resident 

MSOA, OA Only OA-level table that can 

identify cyclists. Defines commute 

origins 

DC7701EW Method of travel to work  by 

distance travelled to work 

LA Indicates distribution of cyclists by 

commute distance (most detailed 

geography available) 

QS702EW Distance travelled to work MSOA, OA Provides cycle commute distances 

of interest in fixed intervals 

(0-2km, 2-5km, 5-10km, 10-20km) 

WP702EW Distance travelled to work 

(Workplace population) 

MSOA, WZ Equivalent to QS702EW, but for 

destinations rather than origins 

QS102EW Population Density MSOA, OA  

LC6107EW Economic Activity by sex by age OA Can extract age/sex for just those in 

employment 

LC4609EW Car or van availability by economic 

activity 

OA Number of cars per household 

LC6201EW Economic activity by ethnic group by 

age 

OA Can extract ethnicity for just those 

in employment 
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5 Methodology 

5.1 Tools 

Table 5 outlines the software tools used for this analysis. As the focus of this study is on demonstrating the 

potential contribution of new methods rather than producing the perfect model for cycle mode choice, 

analysis has been limited to simple linear regression. However, for a more optimal model a range of more 

sophisticated statistical methods should be considered as indicated by the varied selection in the cross-

sectional studies outlined earlier in Table 2. 

Table 5: Software tools used 

Software Tool How used 

GenSynthFlow 

(Java application) 

Newly authored software specifically for this project to synthesize origin-

destination data 

IBM SPSS Linear regression and bivariate correlation 

Python Newly authored scripts to handle API calls, cost function generation from JSON 

data, histogram generation / binning data, flow count vector summation, 

shapefile generation, general data manipulation 

QGIS Spatial query selection, database ‘join’ functions as well as general data 

manipulation and map generation / data visualisation. 

ArcGIS Early exploratory work 

 

5.2 Defining Area Boundaries and Distance Limits 

The study effectively aims to address the question: 

Of the people within Bristol BUA travelling within a 20km Euclidean distance, can the new cost 

functions give: 

(a) a good indication of likelihood to commute by bicycle, 

(b) better information than existing data such as census distance to work tables (QS702) ? 

The range limit of 20km was chosen as very few cyclists commute further than this by means of bicycle 

alone (see Figure 3). The anomaly shown of a rapid increase in cycling above 60km is considered by the ONS 

(2014b) to be due to people cycling from second homes, though it could also be people who combine 

cycling with train travel. By assuming that total cyclist counts are limited to 20km this anomaly and the 

“Other” count will be factored into the analysis which should give a truer representation of cycling 

numbers. Also, by limiting total commuter count to the 20km range the statistical problems of handling 

small numbers for cycling proportions will be reduced. 

Methodology implications of this 20km limit are: 

 Proportion measures of census “distance to work” counts for ranges (0-2, 2-5, 5-10, 10-20km) 

should use a denominator of the 0-20km total, not total commutes. 



28  
 

 Only origin-destination flows less than 20km should be used. 

 Assumption that cyclist count totals equal totals for less than 20km. 

 Assumption that census characteristics of people commuting less than 20km are the same as for all 

commuters. 

 

Figure 3: Cyclist commute distances for Bristol and South Gloucestershire UAs (table DC7701EW) 

 

Figure 4: Geographic boundaries used in the analysis 
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Figure 4 illustrates various boundaries used within the analysis. Residential area classification and 

regressions were limited to areas falling within Bristol “Built Up Area” (BUA) as defined by ONS (2014d). 

The selection of census areas (MSOA, OA, WZ) considered to lie within the BUA and the 3km buffer around 

the BUA was made my considering whether their Population Weighted Centroids (PWC) fell within the 

boundary. This gives 73 MSOAs and 1951 OAs within Bristol BUA, with 86 MSOAs and 736 WZs within the 

3km buffer. 

Origin-destination data synthesis was performed right across the 4 Unitary Authorities (UA) shown to avoid 

geographically overly-constraining the algorithm. Although distances of up to 20km were considered for 

cycle commuting, cycle destinations sent to the routing engine were limited to within the 3km buffer to 

limit the number of routes to a more manageable number whilst analysing the area of most interest. 

However, calculations of mean and median Euclidean commute distance measures are not dependent on 

routing and so were calculated for all origin-destination pairs from Bristol BUA to within the 4 UA. This 

includes all the major population centres within 20km of any part of Bristol BUA (notably Bath and Weston-

Super-Mare). 

5.3 Routing Cost Functions 

As discussed in section 4.2, the OpenStreetMap-based CycleStreets.net routing engine was chosen to 

generate routes and associated data for provided origin-destination commuting flows via the “Journey 

Planner” API (CycleStreets.net, 2014). This returned detailed route coordinates (in WGS1984 

latitude/longitude format) along with a multitude of descriptive data, packaged into a JSON format. Python 

scripts were written to automate API calls and post-process results to produce cost functions – an approach 

alluded to by Lovelace et al (2014, p290). Additionally, coordinate files suitable for direct route plotting in 

ArcGIS or QGIS were generated. 

Given the number of OAs within the BUA, the number of commute routes from each and that return routes 

from WZs will double routing required (unlike with MSOAs), it was decided to limit routing API requests to 

the four most popular commutes (by any means) for each origin area. Limiting routes chosen to only those 

with destinations within a 3km buffer around the BUA should avoid excluding popular cycling routes on the 

fringes of the BUA but ensure that cost functions largely reflect characteristics of the BUA. A minimum 

route distance of 1 km was used to exclude routes more likely to be walked. 

Table 6 details the cost functions and how they were calculated. A key aim in cost function design was 

avoiding collinearity where possible and in particular avoiding functions that would correlate directly with 

distance as these functions are only being evaluated within the 3km buffer. Note that separate non-routed 

distance functions derived directly from origin-destination tables were also used (discussed later). A direct 

measure of ‘hilliness’ could have been generated from the step-by-step elevation data returned by the API. 
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However, it was hoped that this would be more usefully reflected in the ‘Calories consumed’ effort 

estimation which additionally takes into account likely stops on routes. 

Table 6: Routing Cost Function Definitions 

Cost Function Calculation Notes 

Directness (%) (Crow-fly Distance in metres) 

/ (Routed Distance in metres) 

* 100 

Also known as ‘circuitry’, this indicates how out of the 

way a cyclist reasonably needs to travel to avoid the 

busiest roads or take advantage of nearby cycle 

infrastructure (the CycleStreets ‘balanced route’ 

option was selected). 

Traffic (%) 100 – (“Quietness” measure) An indication of how much cycling in traffic would 

need to be done; busy roads would be 100%, with 

cycle lanes or quiet residential streets scoring lower 

and traffic-free cycle paths scoring 0%. 

EffortRatio (Estimated Calories Consumed) 

/ (Routed Distance in metres) 

* 50 

An indication of how hard cycling on the route is, 

arbitrarily scaled to give values close to 1.0. Refer to 

section 3.2.1 in the literature review for the derivation 

of Calories. 

SpeedKmh (Routed Distance in kilometres) 

/ (time in hours) 

Speed is clearly dependent on individual cyclists, but 

using default settings this should give a good 

indication of relative route speeds. 

TimeMin  (Journey Duration in minutes) Note that this is highly correlated with distance and 

only useful for individual route analysis (rather than 

averaging) as routing is limited to the 3km buffer - not 

all commutes under 20km are being considered. 
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5.4 Synthetic Flow Data Generation (GenSynthFlow) 

 

Figure 5: Origin-Destination Table Synthesis (and Validation) Flow Diagram (MSOA & OA level)  

In order to avoid the coarse granularity transport modelling problems outlined in section 3.3.2 of the 

literature review, it was decided to model origin/destination locations at OA/WZ PWC resolution. 

Fortunately because it is not required to model dynamic network loading in response to traffic counts, a 

much simpler origin-destination synthesis than most of those discussed could be used, though the SHAPE-2 

gravity model of Barbour and Fricker (1994) formed a good basis. Although the characteristics to be 

matched were entirely spatial (location and distance) rather than the (typically) socio-economic ones used 

in microsimulation, some of the ideas of allowing randomised iteration not always restricted to lower cost 

solutions were adopted from that field. 

Before describing the steps in the algorithm used, some of the assumptions and limitations will be 

addressed. Ideally, an origin-destination table for just cyclists rather than all commuters would be 

synthesized. However, this is not possible because below Local Authority (LA) level, census data is not 

available for cyclists combined with distance to work categories. The input constraints data is shown in the 

synthesis flow diagram (Figure 5) – see earlier Table 4 for variable descriptions. Because commuting would 

occur across the boundaries of any area modelled (unless all of England and Wales was modelled), it would 

not be expected to get a perfect fit to all the commuter counts. However, by modelling a larger area (4 

complete UAs, covering most of the 20km range required) than that of interest (Bristol BUA), these errors 

should be minimized in the final analysis. 
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Note that some intra-MSOA flows (or OA flows to extremely near WZs) were generated; this is seen in real 

flow data and is not a problem, though such routes would be excluded from routing given the 1km 

minimum distance already discussed. In line with the census constraints data, synthesis was done for one 

‘distance to work’ range at a time (e.g. 2-5km). Given that commuters in an area are not all located at the 

PWC, it might seem better to allow a tolerance beyond that range (e.g. 1-6km). However, this would result 

in unwanted boosts in commuter counts in the overlapping regions so it was avoided. The gravity model 

used assumes that the number of people travelling to a workplace will reduce with increased distance; how 

accurately this is modelled will become apparent in the results when origin-destination synthesized data for 

adjacent distance intervals (e.g. 0-2km, 2-5km) are combined. 

Table 7 shows the algorithm for processing a single distance interval (actual Java software implementation 

details given in Appendix II). 

Table 7: Synthetic Flow Data Generation Algorithm 

Algorithm Step Description 

Create Synthetic Population 

Population sized to equal totals of all workplace destination 

counts from table WP702EW. Each commuter can thus be 

assigned a destination. 

Calculate ‘candidate’ origins 
For each destination, a list of all “candidate origins” within 

current ‘distance to work’ interval range is calculated. 

Assign origin lists to each commuter 
Each commuter assigned a (newly randomly shuffled) list of 

“candidate origins” associated with their destination. 

Assign initial origin to each commuter Each commuter assigned first origin from its list of candidates. 

Count current commuters per origin Sum origin counts across initial population. 

Loop for each commuter (at last commuter wrap to first commuter): 

Calculate origin count 

‘proportional’ mismatch 

Find difference in number of commuters assigned to commuter’s 

current origin with required number (specified in residential 

origin table QS702EW) as a proportion of required number. 

Try changing commuter’s origin 

If next origin in commuter’s candidate list gives a smaller 

mismatch or reduces distance of commute without increasing 

mismatch beyond a certain threshold, then switch origins and 

update counts. 

Reduce mismatch threshold 

Threshold starts off quite large (favouring the distance gravity 

cost function), but progressively reduces to zero (favouring 

mismatch reduction). 

(Repeat loop until no commuters are moved over a full sweep of all their candidate origins) 

 

Running this synthesis for MSOA data allowed for validation of this method against known origin-

destination data (dashed boxes in Figure 5). Synthesis was then repeated using OA origins and WZ 

destinations to generate the data required for small area routing. To test sensitivity to initial population, a 

loop was created to run the whole algorithm many times, with the final summed mismatches after each run 

compared. 
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5.5 Route-based Regression (MSOA level) 

 

Figure 6: Route-based Regression Flow Diagram (MSOA level only) 

As shown in Figure 6, validation of cost functions was attempted by performing bivariate then multivariate 

linear regression on a route-by-route basis against an outcome variable of known cyclist flows. This was 

done by running all (6887) non-zero commuter flows within the 3km buffer through the routing engine in 

both directions. Prior to the multivariate regression, cost functions were tested for collinearity and general 

usefulness using Pearson correlation. Multivariate regression was done by selecting variables that as well as 

increasing the Adjusted R2 fit measure also did not have significant collinearity and seemed like plausible 

relationships. Although this method was intended to provide some validation for the cost functions, there 

are a number of issues that could cause problems: 

 Routing from MSOA PWCs is quite a coarse spatial resolution which might produce 

unrepresentative results. 

 Small census flow counts for cyclists may have had errors intentionally introduced to prevent 

disclosure which could ill-condition the regression. 

 Because the total commuters on each flow varied from 1300 down to just 1, for very small flows a 

small error would cause a large swing in cyclist proportion. For this reason ‘case weighting’ by 

number of commuters was applied within SPSS to reduce the effect, even though this can give 

unrepresentative reports of significance (as they are not truly independent measures). 

 No compensation was made for other determinants that might have a strong influence on the 

outcome variable. (This will be addressed in the next step). 
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5.6 Area-based Regression (MSOA and OA level) 

 

Figure 7: Area-based Regression Flow Diagram (MSOA & OA level) 

Figure 7 shows how cost functions for multiple commute flows were combined for each origin area (OA or 

MSOA). MSOA analysis using census origin-destination (rather than synthetic) data as its input was used to 

further validate the routing cost functions and to act as a basis for comparison with equivalent OA results 

based on synthesized origin-destination data. All MSOA flows within the 3km buffer were routed, but only 

the most popular 4 flows for each OA due to there being 1951 OAs. Note that median and mean Euclidean 

distances were calculated separately as additional cost functions for all flows across the 4 UA, not just 

those routed. Finally, linear regression based models were developed using area proportions of cycling 

commuters from table QS701EW as the outcome variables. Various additional census variables indicated as 

likely to be important cycle mode determinants from the literature (population density, age, sex, car 

ownership, ethnicity) will also be incorporated. Additionally, the census QS702EW “Distance to Work” 

binned measures (0-2km, 2-5km etc) were tried in the regression, particularly for comparison with the new 

Euclidean distance average cost functions.  
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6 Results 

6.1 Synthetic Flow Data Generation (GenSynthFlow) 

When synthesizing origin-destination tables, if there were two adjacent origins (or destinations) that had 

large numbers of commuters for any specified distance range then there would be a high likelihood that 

commute paths might be swapped over between them. Although when routed this would still give a good 

representation of typical journey characteristics, it would make it difficult to directly compare the 

synthesized origin-destination data against the equivalent WU03EW census table. However, to evaluate the 

distance gravity modelling aspect of the synthesis it can be helpful to look at the distribution of all 

Euclidean distances produced for each distance interval (Figure 8), particularly when stripped down to the 

area of interest (Figure 9). To compare actual flows, a visualisation (Figure 10) of synthesized flows (red) 

overlaying census flows (blue) is quite informative; where flows are common, the colours blend to purple. 

(Note that the presence of only synthesized (red) flows at the east and southeast edges is due to census 

flows there being below the threshold being displayed). 

 

Figure 8: Distance distribution of synthesized MSOA origin-destination data within the 4 Unitary Authorities 

  

Figure 9: Distance distribution of synthesized and actual MSOA flow data within 3km buffer of BUA 
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Figure 10: MSOA level 
commuter flows larger 
than 100 within 3km buffer 
of Bristol BUA 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows the results of OA-WZ synthesis with the subset of flows originating in the Bristol BUA in 

black. There are clear steps occurring at distance interval boundaries suggesting a decay curve with 

distance that is slightly too aggressive. Within the Bristol BUA, actual total flows per OA varied from 15 ... 

270, with the synthesized flows matching this within an error range -1 ... +8. Towards the periphery of the 

full 4 UA region, actual flow assignment became more difficult as many of the real origins/destinations 

were missing: error range accordingly increased to -23 ... +34. 

 

Figure 11: Distance distribution of synthesized OA-WZ origin-destination data within the 4 Unitary Authorities 
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6.2 Route-based Regression (MSOA level) 

The adjusted R2 values in Table 8 show how good a model fit each cost function on its own is for predicting 

proportion of cyclists on each origin-destination flow path. The direction of correlation of EffortRatio and 

SpeedKmh were the opposite of what might be expected. Checks for variable collinearity using matrix 

correlation of all variables were made (see Appendix III for full details). These indicated (as might be 

expected) that EuclidDistKm, RoutedDistKm and TimeMin were all highly correlated, so only one of these 

could be used in a multivariate regression model. The only other major correlation noted (-0.903) was 

SpeedKmh and EffortRatio. The somewhat disappointing (Adjusted R2 = 0.146) best fit multivariate model 

that could be produced – even with case weighting by number of commuters per flow (as discussed earlier) 

– is specified in Table 9 . 

Table 8: MSOA PWC Route-based Bivariate Regression against Cycling % of Commuters 

Variable 

(6887 Routes) 

Pearson 

Correlation 

Bivariate Linear Regression 

Adjusted R2 
Unstandardized 

Coefficient B 

Significance 

p-value 

EuclidDistKm -0.347 0.120 -0.755 0.000 

RoutedDistKm -0.362 0.131 -0.577 0.000 

TimeMin -0.354 0.125 -0.354 0.000 

SpeedKmh -0.076 0.006 -0.259 0.000 

EffortRatio +0.016 0.000 +0.453 0.000 

Traffic (%) +0.036 0.001 +0.024  0.000 

Directness (%) +0.117 0.014 +0.106 0.000 

 
Table 9: MSOA PWC Route-based Multivariate Regression (Best Fit) against Cycling % of Commuters 

Variable 

(6887 Routes) 

Multivariate Linear Regression (Adjusted R2 = 0.146) 

Standardized 

Coefficient 

Unstandardized 

Coefficient B 

Significance 

p-value 

(Constant) - 1.395 0.000 

EuclidDistKm -0.366 -0.797 0.000 

Directness (%) +0.161 +0.146 0.000 

 

6.3 Area-based Regression (MSOA level) 

The mean value of cost functions (prefixed “Av”) from all routed commuter flows weighted by flow count 

were calculated for each MSOA area. Table 9 shows that the Euclidean distance variables and some of the 

routing cost variables showed better bivariate model fits than before, though AvEffortRatio and AvTraffic 

correlations were not statistically significant (p-value > 0.05). Census QS702 distance to work measures 

were also introduced for comparison (and combination) with the new variables. When testing for possible 

collinearity between variables, perhaps unexpectedly AvTraffic, AvEffortRatio and AvSpeed were found to 

be all quite closely correlated (see Appendix III for full correlation details). 
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Table 11 shows the best fit multivariate model that could be produced using the new variables – none of 

the routing cost functions were significant when added to this model. Table 12 shows the best fit model 

using none of the new variables, which was actually better. As an alternative to averaging routed distance, 

an experiment with splitting it into 3 or 4 quantile bins (similar to census data) was tried, but this gave no 

improvement. 

Table 10: MSOA level Area-based Bivariate Regression against Cycling % of Commutes < 20km 

Variable 

(for 73 MSOAs) 

Pearson 

Correlation 

Bivariate Linear Regression 

Adjusted R2 
Unstandardized 

Coefficient B 

Significance 

p-value 

MeanEuclidDistKm -0.698 0.480 -3.180 0.000 

MedianEuclidDistKm -0.607 0.369 -2.527 0.000 

AvRoutedDistKm -0.693 0.444 -1.927 0.000 

AvTimeMin -0.641 0.403 -0.464 0.000 

AvSpeedKmh -0.258 0.053 -1.150 0.028 

AvEffortRatio +0.183 (0.020) (+5.250) 0.122 

AvTraffic (%) +0.194 (0.024) (+0.176) 0.099 

AvDirectness (%) +0.282 0.067 +0.409 0.016 

QS702 Distance 0-2km (%) +0.385 0.136 +0.146 0.001 

QS702 Distance 2-5km (%) +0.382 0.134 +0.149 0.001 

QS702 Distance 5-10km (%) -0.571 0.317 -0.233 0.000 

QS702 Distance 10-20km (%) -0.614 0.369 -0.634 0.000 

 

Table 11: MSOA Area-based Multivariate Regression (v1) against Cycling % of Commutes < 20km 

Variable 

(for 73 MSOAs) 

Multivariate Linear Regression (Adjusted R2 = 0.539) 

Standardized 

Coefficient 

Unstandardized 

Coefficient B 

Significance 

p-value 

95% Confidence 

Interval for B 

(Constant) - 11.0 0.024 1.5 – 20.5 

QS102 Population Density (/ha) +0.370 +0.070 0.003 0.025 – 0.115 

MeanEuclidDistKm -0.352 -1.61 0.009 -2.79 – -0.42 

QS702 Distance 2-5km (%) +0.197 +0.077 0.005 0.005 – 0.148 

 
Table 12: MSOA Area-based Multivariate Regression (Best Fit ) against Cycling % of Commutes < 20km 

Variable 

(for 73 MSOAs) 

Multivariate Linear Regression (Adjusted R2 = 0.579) 

Standardized 

Coefficient 

Unstandardized 

Coefficient B 

Significance 

p-value 

95% Confidence 

Interval for B 

(Constant) - 12.758 0.000 8.82 – 16.7 

QS702 Distance 10-20km (%) -0.368 -0.380 0.000 -0.599 – -0.202 

QS102 Population Density (/ha) +0.340 +0.064 0.001 0.029 – 0.100 

QS702 Distance 2-5km (%) -0.265 -0.108 0.005 -0.182 – -0.035 
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6.4 Area-based Regression (OA level) using Synthetic Data 

Using bivariate correlation, the only unexpected correlation detected (full details in Appendix III) was 

between AvSpeedKmh and AvEffortRatio (-0.882). Table 13 shows bivariate regression results for all new 

measures and census distance measures of which only the 2-5km measure had a correlation of less than 0.7 

with MeanEuclidDistKm.  For comparison with MSOA level a multivariate regression with the same 

variables was done (Table 14) showing a fall in Adjusted R2 from 0.539 to 0.292. At OA level this could be 

improved to 0.312 if AvDirectness and AvTraffic were also included, but once again fit was improved slightly 

(and collinearity risk reduced) if all new distance measures were abandoned in favour of the census 

distance measures. 

Table 13: OA level Area-based Bivariate Regression against Cycling % of Commutes < 20km 

Variable 

(for 1951 OAs) 

Pearson 

Correlation 

Bivariate Linear Regression 

Adjusted R2 
Unstandardized 

Coefficient B 

Significance 

p-value 

MeanEuclidDistKm -0.488 0.238 -2.498 0.000 

MedianEuclidDistKm -0.485 0.235 -1.590 0.000 

AvRoutedDistKm -0.296 0.087 -0.994 0.000 

AvTimeMin -0.262 0.068 -0.218 0.000 

AvSpeedKmh -0.246 0.060 -1.211 0.000 

AvEffortRatio +0.253 0.063 +10.36 0.000 

AvTraffic (%) +0.117 0.013 +0.105 0.000 

AvDirectness (%) +0.200 0.042 +0.200 0.000 

QS702 Distance 0-2km (%) +0.252 0.063 +0.103 0.000 

QS702 Distance 2-5km (%) +0.310 0.096 +0.130 0.000 

QS702 Distance 5-10km (%) -0.438 0.191 -0.204 0.000 

QS702 Distance 10-20km (%) -0.406 0.165 -0.393 0.000 

 

Table 14: OA Area-based Multivariate Regression (MSOA comparison) against Cycling % of Commutes < 20km 

Variable 

(for 1951 OAs) 

Multivariate Linear Regression (Adjusted R2 = 0.292) 

Standardized 

Coefficient 

Unstandardized 

Coefficient B 

Significance 

p-value 

95% Confidence 

Interval for B 

(Constant) - +13.7 0.000 12.2 – 15.3 

MeanEuclidDistKm -0.373 -1.91 0.000 -2.22 – -1.69 

QS702 Distance 2-5km (%) +0.221 +0.093 0.000 0.076 – 0.109 

QS102 Population Density (/ha) +0.146 +0.016 0.000 0.012 – 0.021 

 

Table 15 describes the best fit multivariate linear regression model found when additional census variables 

were added based on experimentation with recommendations from the literature. It was noted that 

although cycling showed a strong negative correlation with two or more cars per household, it showed a 

positive correlation with owning one car. Adding a variable for gender was not significant within the 
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regression, even if it was added in the cross tabulated form of males 25-34 or 35-39 where it made less 

contribution than all people in those age groups. White ethnicity was also not significant. The actual cycle 

commute proportions are mapped in Figure 12 with the model predictions in Figure 13 and the model 

errors in Figure 14 (note these are absolute errors in the % cycling, not % errors in the % cycling). 

Table 15: OA Area-based Multivariate Regression (Best Fit) against Cycling % of Commutes < 20km 

Variable 

(for 1951 OAs) 

Multivariate Linear Regression (Adjusted R2 = 0.357) 

Standardized 

Coefficient 

Unstandardized 

Coefficient B 

Significance 

p-value 

95% Confidence 

Interval for B 

(Constant) - -30.7 0.000 -35.1 – -26.4 

QS702 Distance 2-5km (%) +0.719 +0.302 0.000 0.264 – 0.339 

QS702 Distance 0-2km (%) +0.716 +0.291 0.000 0.251 – 0.331 

QS702 Distance 5-10km (%) +0.325 +0.151 0.000 0.108 – 0.195 

LC6107 Age25-34(%) +0.226 +0.117 0.000 0.091 – 0.142 

LC6107 Age35-49 (%) +0.185 +0.134 0.000 0.102 – 0.167 

AvDirectness +0.134 +0.130 0.000 0.095 – 0.166 

LC4609 No Cars in Household (%) -0.105 -0.050 0.000 -0.074 – -0.026 

QS102 Population Density (/ha) +0.097 +0.011 0.000 0.006 – 0.015 

 

Figure 12: Actual (Census 
recorded) Cycle Commute 
Proportions by area (OA) 
for Bristol BUA 
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Figure 13: Predicted Cycle 
Commute Proportions by 
area (OA) for Bristol BUA 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: for Cycle 
Commute Proportion 
Model by area (OA) for 
Bristol BUA 
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7 Analysis and Discussion 

7.1 Synthetic Flow Data Generation (GenSynthFlow) 

Although it proved difficult to find a suitable statistical measure for overall validation of the synthesis 

against census MSOA origin-destination data, the measures and visualisations shown in the results suggest 

that the synthesis should be reasonably representative for the routing requirements of this study. 

Gravity model-based optimisation: The issue highlighted of overly-steep distance decay curves could be 

fixed by modifying the rate of reduction of the ‘mismatch threshold’, but a less arbitrary approach would be 

better. One approach to improving adaptation towards an optimal solution could be to consider swapping 

over two flow origins in one step, rather than just moving a single flow to a different origin. 

Initial population: In tests where the synthesis was repeated with many different initial populations, it was 

found that after each iteration sequence had stabilised there was very little difference between final largest 

mismatches as a proportion of total commuters for each flow – suggesting insensitivity to initial population. 

For this specific synthesis task, a more representative result might be generated by starting with an initial 

population based on 2001 census flow data, albeit with the reservations stated earlier about problems with 

this data. However, such an approach is made more complicated by the change in destination geographies 

to WZs in the 2011 census. 

7.2 Cycle Routing of Synthesized (OA level) Flows 

Before aggregating results of the cycle routing engine by each journey origin area, it can be informative to 

examine estimated routes themselves. Figure 15 illustrates the counts for each route if all commuters were 

to cycle. Where more than one route overlaps, counts were summed to give an indication of potential total 

traffic flow. Large summed flows can imply several things: high demand, desirable routes (such as traffic-

free cycle paths) or lack of available alternatives (network impermeability). To see how well existing cycling 

infrastructure caters for potential commuting routes, it is helpful to overlay both on the same map (Figure 

16); for clarity, routed flows have been reduced to a single colour and the base map has been removed. It 

should be noted that the ‘balanced’ routing algorithm used will try to take advantage of cycle 

infrastructure, but only where it does not introduce too much of a detour. 
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Figure 15: Summed Cycle Routing for 
Commutes less than 20 km from Bristol BUA 

 

 

 

 

 

 

 

Figure 16: Cycle Routing compared to Cycle 
Infrastructure in Bristol BUA 
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7.3 Cost Functions Aggregated by Origin Area 

Before combining cost functions in the final area-based regression analysis, each are considered on their 

own to investigate what exactly they reveal and how this might contribute as a determinant of commuter 

cycle mode choice. 

7.3.1 Mean Euclidean Distance 

Euclidean (“as the crow flies”) distance was calculated for all flows less than 20km from the Bristol BUA 

with destinations within the 4 UA region as (unlike the other cost functions) it was not dependent on 

routing. The results aggregated by OA are shown in Figure 17 together with proportionally-sized indicators 

of WZ destinations that have more than 1000 workers. Although WZ areas are sized to try to have similar 

number of workers in each, particularly large counts indicate a single big employment site (such as a single 

employer, retail block or business park). The largest of these represents the MOD Abbey Wood site in north 

Bristol which employed over 10,000 people by 2012. Although many people in Bristol commute to other 

cities, because range is being limited to less than 20km, this map shows mainly those commuting within 

Bristol, although for those living on the south-east side, the city of Bath is within range. The results suggest 

that most people were commuting into the centre or north of the city. The exception is the north-west 

periphery of the city, probably due to the large dockside industrial estates in the Avonmouth area. 

 

Figure 17: Mean Euclidean Distance by OA for Commutes less than 20 km from Bristol BUA 
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7.3.2 Travel Time 

In order to calculate travel time (and effort required), it was necessary to perform routing in both directions 

of each commute and average them. Although travel time was too highly correlated with distance to be 

additionally used in a regression model, when mapped (Figure 18) it is interesting to note that the average 

cycle commute time for most people living the Bristol BUA (and commuting less than 20km) would be less 

than 25 minutes. (The large red area in the north is a single very sparsely populated rural OA). 

 

Figure 18: Mean Travel Time by OA for Commutes less than 20 km from Bristol BUA 

7.3.3 Directness 

This measure of directness (Euclidean distance / routed distance) can indicate how well connected an area 

is; surrounding the larger red area in Figure 19 is an airport and a golf course. If (effective) connectedness 

was the same for all forms of transport then it should have little bearing on cycle mode choice. However, 

because cycle routing was done using the ‘balanced’ mode rather than ‘fastest’, then directness should also 

indicate where cycle routes were diverted away from direct paths, perhaps to either avoid major roads or 

to take advantage of nearby cycle infrastructure. A more useful measure might have been to compare 

distance between ‘balanced’ and ‘fastest’ routing algorithms. The ‘cycle routing’ shown on the map is all 

routes with summed commuter counts greater than 50 and helps explain the directness measure for larger 

areas. However, the large variation in directness at small area resolution could be a useful insight into how 
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difficulty in finding acceptable routes close to home can dissuade people from considering cycle 

commuting.  

 

Figure 19: Mean Directness by OA for Commutes less than 20 km from Bristol BUA 

7.3.4 Cycling in Traffic 

The AvTraffic cost function (Figure 20) is intended to indicate how likely commute routes from an area 

would involve cycling in traffic. By plotting locations of cycle infrastructure on the map it can be seen that in 

most areas, the presence of local traffic-free cycle paths tallies with high values of this measure, suggesting 

the infrastructure is located along or close to actual commuting routes. However there are notable 

exceptions: the areas marked red in the centre and south of the city imply that in these places either 

infrastructure is not on commuting routes and/or that the destinations commuted to by people in this area 

involve much longer sections of high traffic volumes. Either way, these exceptions (and the comparison 

between routes and infrastructure made earlier in Figure 16) suggest that this route-based measure should 

be a more representative determinant of the effect of cycle infrastructure on cycle mode choice than area-

based averages of cycle infrastructure density such as those used by Parkin et al (2008). 
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Figure 20: Mean Traffic Exposure by OA for Commutes less than 20 km from Bristol BUA 

7.3.5 Effort to Distance Ratio 

This measure was intended to indicate how much effort would be required de-correlated from journey 

length. It was anticipated that this would strongly reflect the impact of hills on commute routes (noted as a 

strong cycle mode determinant in the literature). However comparing the AvEffortRatio measure (Figure 

21) with terrain (Figure 22) this does not appear to be so – particularly for those living in areas at the top of 

hills. Thus the measure is probably dominated by the estimation of the amount of stopping and starting 

required – which would tally with it generally being worse in the more congested urban areas with many 

traffic control measures (such as traffic lights) closer to the centre of the city. It may also explain why as 

well as sharing a strong negative correlation with AvSpeedKmh, the variable shows a positive correlation 

with cycle mode choice: stops and starts can be more of an impediment to journey time for cars than 

bicycles, particularly where bicycles can cut through congested traffic. 
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Figure 21: Mean Effort to 
Distance Ratio by OA for 
Commutes less than 20 km 
from Bristol BUA 

 

 

 

 

 

 

 

 

 

 

Figure 22: Digital Terrain 
Map (DTM) for Bristol Area 
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7.4 Regression Analysis 

MSOA Route-based Analysis: This gave disappointingly poor results, with only the Directness measure 

adding a useful contribution to the regression model. This could reflect that MSOAs are quite large areas so 

their centres (PWCs) might be a long way from true commute origins and destinations, thus making routing 

unrepresentative; in previous maps of OA level routing costs, there is typically large variation in values 

across each MSOA-sized area. 

MSOA Area-based Analysis: both AvTraffic and AvEffortRatio were not statistically significant, perhaps 

reflecting their lack of strong influence and the relatively small sample size (73 MSOAs). AvDirectness did 

measure as significant, but made no useful contribution to the model which was dominated by distance 

and population density measures. This suggests that these routing-based cost functions are not useful at 

MSOA level. The overall fit of the model (Adjusted R2 = 0.579) using only 3 variables is reasonable (it 

explains nearly 60% of cases) though less than the 0.81 achieved in a model at similar area granularity 

(Wards) by Parkin et al (2008). However, that model used many more variables and a much larger sample 

size. 

OA Area-based Analysis: Although all new cost functions were statistically significant, only AvDirectness 

made a useful contribution to the fit of the final model – one that was greater than number of cars or 

population density (both of which are noted in literature as useful determinants). The overall fit of the OA-

level model (Adjusted R2 = 0.292) is much worse than at MSOA level using exactly the same variables. This 

is not entirely surprising as when data is aggregated to larger areas, detail is lost and areas appear more 

similar to each other – thus correlations would naturally increase. Visually, the model (Figure 13) appears a 

reasonable fit to the actual (Figure 12) cycle mode proportions, albeit underestimating the larger values 

(just north of the centre). However, the Adjusted R2 measure for OA fit is poor enough to suggest that 

regressions done at such a small area level might not be useful. 

Other variables: In the map of OA regression model errors (Figure 14), there is some apparent spatial 

clustering which suggests that key variables are missing from the model. The under-prediction (red) in 

areas just north of the centre coincides with quite affluent areas of the city and large student populations, 

neither of which was represented in the model. 
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8 Conclusions 

This study has investigated two new methods which when combined aim to improve determination  of 

commuting cycle mode choice. The synthetic flow data generation method proved difficult to thoroughly 

validate quantitatively, but indicator measurements were promising and when mapped it visually gave a 

representatively close match with 2011 census MSOA-level flow data for the city of Bristol. When applied at 

OA level, error indicator results were promising, though small issues were noted with decay curves of 

commuter count against distance travelled. For this specific analysis, results might be further improved if 

an initial population was created based on available earlier census flow data from 2001. 

The second method involved creation of cost functions for commuting routes based on a third party cycle 

routing engine and aggregation of these by origin (residential) area. The initial validation attempt involving 

route-based regression at MSOA level failed, though this was considered at least partly due to fine-grain 

routing adding little extra information given the large uncertainty in origin/destination location in areas the 

size of MSOAs. A more revealing analysis might be to repeat this step at OA level when (and if) 2011 census 

OA cycle flows become available in a form suitable to allow this. 

The routing cost functions chosen varied in their usefulness: 

 ‘Directness’ (ratio of Euclidean to Routed commute distance) made a notable contribution to the 

final regression model and could possibly be further improved by replacing the Euclidean distance 

measure with a ‘fastest’ routed distance. 

 ‘EffortRatio’ (estimated energy divided by routed distance) intuitively should be a better 

determinant of cycle mode choice than just a measure of hilliness (a documented cycle commuting 

detractor) as it also incorporates energy expended at likely stop/start locations. However, such 

stop/start behaviour may be more of a hindrance to car drivers (certainly in its impact on speed), 

so this measure is not ideal for regression analysis. However, as the routing engine used directly 

returned elevation measures along the route, a direct measure of hilliness could be derived. 

 ‘Traffic’ (likelihood of cycling in motor traffic) proved representative of the level of cycle 

infrastructure, but was not helpful in cycle mode choice regression.  This could indicate that 

infrastructure has little impact on cycle mode choice, but the measure gives little indication of how 

much the infrastructure is actually required at each location. Although it includes a rating for 

general types of road, the measure could be improved by combining it with estimated motor traffic 

counts from each road taken from established transport models based on actual traffic count data. 

With area-based regression at MSOA level, none of the routing-derived functions made a useful 

contribution to the (quite good) overall model fit, further confirming the suggestion that MSOAs are too 

coarse a level for routing to be representative. However, better results might have been achieved with a 

sample size larger than 73 MSOAs. At OA level, ‘Directness’ (only) did make a useful contribution to the 



51  
 

cycle mode choice regression model but overall model fit was poor. Due to resource limitations, only the 

four most popular commute routes from each OA had been modelled; more representative measures 

based on a larger number of routes might have improved regression results. It is thus recommended that a 

hybrid approach should be tried: calculating routing costs at OA level (using improvements to cost 

functions outlined above) perhaps on a large number of routes, then aggregating these results up to a 

higher (LSOA/MSOA) level in order to take advantage of the better overall model fit achievable with the 

other data. 

Within the current study some shortcomings of aggregate data analysis were noted: there was a lack of 

statistical significance for (univariate) gender measures in the regression model (despite widely 

documented male cycle commute preference). This was probably due to gender balance being very similar 

across areas. Cross-tabulation with other variables would help, but there was little opportunity for this at 

OA level. Thus the potential power of routing-based cost functions might lie in non-aggregate modelling 

where each individual’s commuting (or general utility) cycling origin-destination locations are known. 

An additional potentially useful output from this study is the generation of maps of summed routes of 

simulated cycle commuter flows (fig 15). Even when based on synthesized flow data these should give a 

good representation of potential cycle network hotspots where it would be worthwhile to target provision 

or upgrading of suitable cycle infrastructure. To relate such a function to the city of the analysis: in the 

recently published draft Bristol Cycle Strategy (Bristol City Council, 2014a) there is a strong emphasis on the 

provision of a coherent network of cycle ‘freeways’ specifically aimed at efficient commuting and utility 

cycling. It is clear from this study that consideration of the effects of fine-grain route details tallied with 

realistic commuting flows is important. Knowing potential hotspots for cycle commuting based on likely 

commuting flows could thus be helpful in designing and staging the implementation of such a network. 
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Appendix I: Glossary of Acronyms 

UA –Unitary Authorities  

OA – Output Area 

LA – Local Authority 

MSOA – Middle layer Super Output Area 

LSOA – Lower layer Super Output Area 

WZ – Workplace Zone 

PWC – Population-Weighted Centroids 

BUA – Built Up Areas 

ONS – Office for National Statistics 

NTS – National Travel Survey 

ID – Indices of Deprivation 

DfT – (UK Government) Department for Transport 

ABM – Agent Based Model 
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Appendix II: GenSynthFlow (Java software) 

GenSynthFlow is a Java implementation of the origin-destination flow synthesis algorithm described in 

section 5.4 on page 31 of the Methodology. The UML class diagram in Figure 23 gives an overview of each 

of the classes (one per source file), the data objects and methods they consist of, and how the classes are 

interdependent. The basic operation is as follows: 

 The top level ‘main()’ method (residing in class GenSynthFlow) reads in CSV-format census data 

files describing the commuter flow counts and coordinates for each commuting origin OA and 

commuting destination WZ. 

 Each OA and each WZ will have its own object (of class ZoneFlow) to store its flow count and 

coordinates. 

 These are grouped into lists oaFlowList and wzFlowList (of class ZoneFlowList). 

 ‘main()’ then creates a list for each WZ destination of all the candidate OA origins that are within 

the currently selected range of it (e.g. 2-5km) and stores these in candOAsForAllWZs (of class 

CandOAsPerWZ). 

 It then creates an initial synthetic population (via the constructor of class SynthPop). 

o  ‘SynthPop()’ creates an array of objects (of class Worker) representing the commuting 

population. The array is sized to equal the total of all the WZ flow counts. 

o The WZs of each worker are fixed (for eternity) at this point. 

o Random OAs are assigned to each worker, based on those found in the list of possible 

candidates (candOAsForAllWZs)  . 

 ‘main()’ then iterates the population by calling method ‘iterSynthFlowDist()’ of class SynthPop to 

juggle OAs assigned to each Worker to reduce mismatches. ‘iterSynthFlowDist()’ keeps track of the 

current total flow counts for each origin OA in array AreaCount (within class AreaWorkingCounts). 

 Finally ‘main()’ converts the population to an origin-destination flow table by calling the 

‘popToFlowMatrix()’ method (within class SynthPop) and writes the data out to a CSV file (via class 

CSVWriter). 

The complete source code and detailed JavaDoc documentation is viewable online at: 
http://richard-thomas.github.io/GenSynthFlow/  

 

http://richard-thomas.github.io/GenSynthFlow/
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Figure 23: UML Class Diagram for GenSynthFlow Java software 
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Appendix III: Correlations between ‘Independent’ Variables 

The following tables detail all the (often unexpected) correlations between some of the dependent 

variables used in the 3 linear regressions in the study. (More obviously correlated variables like median 

distance and average journey time have been omitted). Mixing such correlated variables was generally 

avoided as can indicate collinearity which might ill-condition the regression. Correlations greater than 0.8 

can be problematic, though ones greater than 0.7 have also been highlighted as ones to be wary of. 

Table 16: MSOA Route-based Correlations between Nominally Independent Variables 

 EffortRatio Traffic SpeedKmh 

EffortRatio Pearson Correlation 1 .700 -.903 

Sig. (2-tailed)  .000 .000 

Traffic Pearson Correlation .700 1 -.703 

Sig. (2-tailed) .000  .000 

SpeedKmh Pearson Correlation -.903 -.703 1 

Sig. (2-tailed) .000 .000  

N 6887 6887 6887 

 

Table 17: Notable MSOA Area-based Correlations between Nominally Independent Variables 

 MeanEuc

DstKm 

AvSpeed 

Kmh 

AvEffort

Ratio 

AvTraffic 2-5km 

(%) 

5-10km 

(%) 

10-20km 

(%) 

MeanEucDstKm Pearson Correlation 1 .362 -.237 -.325 -.412 .817 .756 

Sig. (2-tailed)  .002 .044 .005 .000 .000 .000 

AvSpeedKmh Pearson Correlation .362 1 -.936 -.849 -.140 .517 .081 

Sig. (2-tailed) .002  .000 .000 .239 .000 .495 

AvEffortRatio Pearson Correlation -.237 -.936 1 .853 .044 -.328 -.091 

Sig. (2-tailed) .044 .000  .000 .713 .005 .444 

AvTraffic Pearson Correlation -.325 -.849 .853 1 .166 -.390 -.187 

Sig. (2-tailed) .005 .000 .000  .160 .001 .113 

2-5km (%) Pearson Correlation -.412 -.140 .044 .166 1 -.528 -.323 

Sig. (2-tailed) .000 .239 .713 .160  .000 .005 

5-10km (%) Pearson Correlation .817 .517 -.328 -.390 -.528 1 .353 

Sig. (2-tailed) .000 .000 .005 .001 .000  .002 

10-20km (%) Pearson Correlation .756 .081 -.091 -.187 -.323 .353 1 

Sig. (2-tailed) .000 .495 .444 .113 .005 .002  

N 73 73 73 73 73 73 73 
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Table 18: Notable OA Area-based Correlations between Nominally Independent Variables 

 MeanEuc

DstKm 

AvSpeed 

Kmh 

AvEffort 

Ratio 

0-2km 

(%) 

5-10km 

(%) 

10-20km 

(%) 

MeanEucDstKm Pearson Correlation 1 .439 -.426 -.710 .712 .795 

Sig. (2-tailed)  .000 .000 .000 .000 .000 

AvSpeedKmh Pearson Correlation .439 1 -.882 -.380 .558 .145 

Sig. (2-tailed) .000  .000 .000 .000 .000 

AvEffortRatio Pearson Correlation -.426 -.882 1 .374 -.516 -.154 

Sig. (2-tailed) .000 .000  .000 .000 .000 

0-2km (%) Pearson Correlation -.710 -.380 .374 1 -.512 -.353 

Sig. (2-tailed) .000 .000 .000  .000 .000 

5-10km (%) Pearson Correlation .712 .558 -.516 -.512 1 .261 

Sig. (2-tailed) .000 .000 .000 .000  .000 

10-20km (%) Pearson Correlation .795 .145 -.154 -.353 .261 1 

Sig. (2-tailed) .000 .000 .000 .000 .000  

N 1951 1951 1951 1951 1951 1951 

 
 


